98%
921
2 minutes
20
The ability to generate high-intensity ultrashort laser pulses is a key driver for advancing the strong-field physics and its applications. Post-compression methods aim to increase the peak intensity of amplified laser pulses via spectral broadening through self-phase modulation (SPM), followed by temporal pulse compression. However, other unavoidable nonlinear self-action effects, which typically occur parallel to SPM, can lead to phase distortions and beam quality degradation. Here we study the ability to compress high-energy pulses by loose focusing in a noble gas to induce nonlinear spectral broadening, while limiting unwanted nonlinear effects such as self-focusing. We introduce ptychographic wavefront sensor and FROG measurements to identify the regimes that optimize pulse compression while maintaining high beam quality. Using a 700 mbar argon-filled double-pass-based scheme, we successfully compress 2 mJ, 170 fs, 1030 nm laser pulses to ∼35 fs, achieving 90% overall flux efficiency and excellent stability. This work provides guidelines for optimizing the compressed pulse quality and further energy scaling of double-pass-based post-compression concepts.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OE.539655 | DOI Listing |
J Chem Phys
September 2025
Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, India.
We introduce a novel method using a kilohertz (kHz) amplified 800 nm laser for the first experimental confinement of microparticles within a single beam. This study demonstrates that high-energy kHz pulses can confine 1-μm-radius polystyrene beads in water within ∼26 μm. This approach utilizes the unique properties of high-energy pulsed lasers, distinct from continuous-wave and megahertz pulsed lasers traditionally used in optical trapping.
View Article and Find Full Text PDFJ Chem Phys
September 2025
Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang Province 310027, China.
Sum-frequency generation vibrational spectroscopy (SFG-VS) has been well-established as a unique spectroscopic probe to interrogate the structure, interaction, and dynamics of molecular interfaces, with sub-monolayer sensitivity and broad applications. Sub-1 cm-1 High-Resolution Broadband SFG-VS (HR-BB-SFG-VS) has shown advantages with high spectral resolution and accurate spectral line shape. However, due to the lower peak intensity for the long picosecond pulse used in achieving sub-wavenumber resolution in the HR-BB-SFG-VS measurement, only molecular interfaces with relatively strong signal have been studied.
View Article and Find Full Text PDFNanoscale
September 2025
School of Mechanical Engineering, Shandong University of Technology, Zibo 255000, China.
Metal matrix composites are widely employed in aerospace and marine engineering due to their excellent mechanical properties and chemical stability. However, their surfaces remain vulnerable to corrosion, icing, and mechanical wear, severely compromising long-term reliability in harsh environments. Inspired by natural superhydrophobic surfaces such as lotus leaves, functional interfaces with high water repellency and interfacial stability can be engineered through the synergistic design of hierarchical micro/nanostructures and low-surface-energy chemical modifications.
View Article and Find Full Text PDFLab Chip
September 2025
Department of Engineering Design, Indian Institute of Technology Madras, India.
Microfluidic devices offer more accurate fluid flow control and lower reagent use for uniform nanoparticle synthesis than batch synthesis. Here, we propose a microfluidic device that synthesizes uniform iron oxide nanoparticles (IONPs) for highly efficient intracellular delivery. The 3D-printed device was fabricated, comprising two inlets in the T-shaped channel with an inner diameter of 2 mm, followed by a helical mixing channel with a single outlet.
View Article and Find Full Text PDFAnal Chim Acta
November 2025
Laser Spectroscopy Lab, Department of Physics, University of Agriculture Faisalabad, 38090, Pakistan. Electronic address:
Background: Classification of rose species and verities is a challenging task. Rose is used worldwide for various applications, including but not restricted to skincare, medicine, cosmetics, and fragrance. This study explores the potential of Laser-Induced Breakdown Spectroscopy (LIBS) for species and variety classification of rose flowers, leveraging its advantages such as minimal sample preparation, real-time analysis, and remote sensing.
View Article and Find Full Text PDF