98%
921
2 minutes
20
Bacillus pumilus plays an essential role in agricultural applications as a beneficial microbe and for sustainable agriculture production. However, the underlying mechanisms of B. pumilus strains remain unclear as to how they are beneficial for plants as stress tolerant and growth promoters. Bacillus pumilus was isolated from the rhizosphere soil of Artemisia vulgaris. NGS (next-generation sequencing) was performed for the strain to gain new insights into the molecular mechanisms underlying plant-microbial interactions. NGS revealed 3,910 genes, 3294 genes with protein-coding, and 11 functional genomic regions related to diverse agronomic traits including stress tolerance. We identified the two possible phytohormone biosynthesis approaches from metabolic regions1(terpense→diterpense→betacarotene→xanthoxin→ABA)2(terpense→diterpense→geranyl diphosphate →C20 →GA). Several gene clusters related to the biosynthesis of phytohormones, stress tolerance, and agricultural diversification were predicted. The genome provides insights into the possible mechanisms of this bacterium for stress tolerance and its future applications. The genomic organization of B. pumilus revealed several hallmarks of its plant growth promotion and pathogen suppression activities. Our results provide detailed genomic information for the strain and reveal its potential stress tolerance mechanisms, laying the foundation for developing effective stress tolerance strategies against abiotic stress.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11582693 | PMC |
http://dx.doi.org/10.1038/s41598-024-78227-3 | DOI Listing |
Biotechnol J
September 2025
Department of Molecular Biosciences and Bioengineering, University of Hawai'i at Mānoa, Honolulu, Hawai'i, USA.
CRISPR technologies are rapidly transforming agriculture by enabling precise and programmable modifications across a wide range of organisms. This review provides an overview of CRISPR applications in crops, livestock, aquaculture, and microbial systems, highlighting key advances in sustainable agriculture. In crops, CRISPR has accelerated the improvement of traits such as drought tolerance, nutrient efficiency, and pathogen resistance.
View Article and Find Full Text PDFMicrob Biotechnol
September 2025
Departamento de Biología Funcional, Universidad de Santiago de Compostela, Santiago de Compostela, Spain.
The seed microbiota, a still underexplored component of plant-microbe interactions, plays a pivotal role in plant development and holds significant promise for advancing sustainable agriculture. By influencing essential processes such as germination, stress tolerance, nutrient acquisition and defence, seed-associated microbes offer unique advantages beyond those of soil- or rhizosphere-associated microbiomes. Notably, they are transmitted both vertically and horizontally; however, fundamental questions remain regarding their origin, ecological dynamics and functional roles across environments.
View Article and Find Full Text PDFEnviron Microbiol Rep
October 2025
Department of Soil Science and Plant Nutrition, Faculty of Agriculture, Selcuk University, Konya, Türkiye.
Boron toxicity and salinity are major abiotic stress factors that cause significant yield losses, particularly in arid and semi-arid regions. Hyperaccumulator plants, such as Puccinella distans (Jacq.) Parl.
View Article and Find Full Text PDFGenome Biol
September 2025
National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China.
Background: Soil salinization represents a critical global challenge to agricultural productivity, profoundly impacting crop yields and threatening food security. Plant salt-responsive is complex and dynamic, making it challenging to fully elucidate salt tolerance mechanism and leading to gaps in our understanding of how plants adapt to and mitigate salt stress.
Results: Here, we conduct high-resolution time-series transcriptomic and metabolomic profiling of the extremely salt-tolerant maize inbred line, HLZY, and the salt-sensitive elite line, JI853.
Trends Immunol
September 2025
Systemic Autoimmunity Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, 10 Center Drive, 12N248C, Bethesda, MD 20892, USA. Electronic address:
Autoimmune diseases arise from genetic and environmental factors that disrupt immune tolerance. Recent studies highlight the role of myeloid cell immunometabolism, particularly mitochondrial dysfunction, in driving autoimmunity. Mitochondria regulate energy homeostasis and cell fate; their impairment leads to defective immune cell differentiation, abnormal effector activity, and chronic inflammation.
View Article and Find Full Text PDF