98%
921
2 minutes
20
Distinct target genes are modulated by microRNA members and affect various biological processes associated with abiotic stress responses in plants. In this study, we characterized a functional module comprising miRNA/target and a downstream MYB transcription factor partner, Tae-MIR1118/TaCaM2/TaMYB44, in Triticum aestivum to mediate the plant low-nitrogen (N) stress response. Dual luciferase (LUC) assay and expression analysis indicated that TaCaM2 is regulated by Tae-MIR1118 through a posttranscriptional cleavage mechanism. Reporter LUC activity in N. benthamiana leaves co-transformed with effector CaMV35S::Tae-MIR1118 and reporter TaCaM2::LUC was significantly reduced, and the transcripts of Tae-MIR1118 and TaCaM2 in tissues exhibited converse expression patterns under varying N levels. Specifically, the transcripts of Tae-MIR1118 decreased, whereas those of TaCaM2 increased under low-N stress in a temporal-dependent manner. Yeast two-hybrid, bimolecular fluorescence complementation (BiFC) and co-immunoprecipitation (Co-IP) assays indicated that TaCaM2 interacted with the MYB transcription factor TaMYB44. Transgene analysis revealed the negative roles of Tae-MIR1118 and the positive functions of TaCaM2 and TaMYB44 in regulating plants for low-N stress adaptation by modulating glutamine synthetase activity, N uptake capacity, and root morphology. Yeast one-hybrid, transcriptional activation, and chromatin immunoprecipitation-quantitative polymerase chain reaction (ChIP-PCR) assays indicated that TaMYB44 could bind to the promoters of genes TaGS2.2, TaNRT2.1, and TaPIN4 and induce transcription of these stress-defensive genes. Knockdown of these three genes reduced GS activity, N accumulation, and root growth traits in plants subjected to N starvation. The yield in the wheat variety panel was highly correlated with the transcripts of Tae-MIR1118, TaCaM2, and TaMYB44 in plants cultured under N-deprived field conditions. A major haplotype of Tae-MIR1118, TaMIR1118-Hap1, enhanced the low-N stress tolerance of plants. Our findings indicate that the Tae-MIR1118/TaCaM2/TaMYB44 pathway primarily affects the low-N response of plants by modulating associated physiological processes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/pce.15285 | DOI Listing |
Int J Biol Macromol
September 2025
Faculty of Agronomy and Agricultural Sciences, University of Dschang, PO. Box 222, Dschang, Cameroon.
Dissolved organic matter (DOM) plays a key role in grassland carbon biogeochemistry and shows sensitivity to global climate change, particularly nitrogen (N) deposition. We investigated the soil DOM molecular composition by UV-Vis and fluorescence spectroscopy, and FT-ICR MS through a N addition experiment (CK, N5, N10, N20, and N40 [0, 5, 10, 20, and 40 g N m-2 year-1, respectively]) in a desert steppe of northwest China. Moderate N inputs (N5-N20) caused a dose-dependent increase in DOM content (9.
View Article and Find Full Text PDFPhysiol Plant
September 2025
College of Natural Resource and Environment, Northwest A&F University, Yangling, Shaanxi, China.
Nitrogen (N) is essential for plant growth, but excessive fertilizer use decreases nitrogen use efficiency (NUE) and raises environmental concerns. This study investigated the effect of exogenous abscisic acid (ABA; 50 μM) application on rapeseed (Brassica napus L.) plants under hydroponic conditions with high (7.
View Article and Find Full Text PDFJ Int Soc Sports Nutr
December 2025
Seowon University, Department of Food and Nutrition, Cheongju, Republic of Korea.
Background: Hydration status plays a critical role in modulating oxidative stress during exercise, which can influence physical performance and recovery. While the acute effects of hydration on exercise-induced oxidative stress are well-documented, the long-term impact of chronic water intake remains poorly understood. Therefore, this study aimed to investigate the relationship between chronic low water intake and exercise-induced oxidative stress, as well as changes in the phenotypic composition of peripheral immune cells.
View Article and Find Full Text PDFPlant Physiol Biochem
August 2025
College of Forestry, Guizhou University, Guiyang, 550025, China; Institute for Forest Resources & Environment of Guizhou, Guizhou University, Guiyang, 550025, China; Key Laboratory of Forest Cultivation in Plateau Mountain of Guizhou Province, Guiyang, 550025, China.
Nitrogen (N) deficiency significantly constrains plant growth and the productivity of plantations. To elucidate the adaptation mechanisms of Gleditsia sinensis (G. sinensis) to low-N stress, an integrated analysis encompassing physiology, transcriptomics, and metabolomics was conducted on low-N tolerant (Changshun1, R) and sensitive (Luoting2, S) genotype seedlings.
View Article and Find Full Text PDFPhysiol Mol Biol Plants
July 2025
School of Life and Environmental Sciences, University of Sydney, 380 Werombi Road, Brownlow Hill, Camden, NSW 2570 Australia.
Unlabelled: Sugars are essential for plant development, with nitrogen (N) availability playing a critical role in their distribution across plant organs, ultimately shaping growth patterns. However, the regulatory mechanisms modulating carbon (C) assimilate allocation and utilization under different N forms are not well understood. This study examined C fixation, utilization, and spatial re-distribution in the roots of hydroponically grown maize seedlings subjected to four N treatments: 1 mM NO (low N; LN), 2 mM NO (medium N; MN), 10 mM NO (high N; HN), and 1 mM NH (low ammonium; LA).
View Article and Find Full Text PDF