Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Diabetic kidney disease (DKD) is the leading cause of end stage kidney failure worldwide, of which cellular insulin resistance is a major driver. Here, we study key human kidney cell types implicated in DKD (podocytes, glomerular endothelial, mesangial and proximal tubular cells) in insulin sensitive and resistant conditions, and perform simultaneous transcriptomics and proteomics for integrated analysis. Our data is further compared with bulk- and single-cell transcriptomic kidney biopsy data from early- and advanced-stage DKD patient cohorts. We identify several consistent changes (individual genes, proteins, and molecular pathways) occurring across all insulin-resistant kidney cell types, together with cell-line-specific changes occurring in response to insulin resistance, which are replicated in DKD biopsies. This study provides a rich data resource to direct future studies in elucidating underlying kidney signalling pathways and potential therapeutic targets in DKD.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11576882PMC
http://dx.doi.org/10.1038/s41467-024-54089-1DOI Listing

Publication Analysis

Top Keywords

kidney
8
insulin-resistant kidney
8
diabetic kidney
8
kidney disease
8
insulin resistance
8
kidney cell
8
cell types
8
dkd
5
profiling insulin-resistant
4
kidney models
4

Similar Publications

Background: In hyponatremic patients, concurrent dialysate flow during hemodialysis may be an ideal option to mitigate complications such as osmotic demyelination syndrome (ODS).

Methods: Present randomized controlled trial enrolled dialysis-requiring chronic kidney disease (CKD) and acute kidney injury (AKI) patients with serum sodium levels < 125 mEq/L during January 2020 over 16 months. Hemodynamically unstable patients, as well as those with a history of seizures and neurological conditions, were excluded.

View Article and Find Full Text PDF

Objective: Interleukin-17-producing CD4 Th17 cells contribute to the pathogenesis of autoimmune diseases, including crescentic glomerulonephritis. Although ADAM9 has been reported to contribute to organ inflammation, the mechanism remains poorly understood. The goal of the current study was to investigate how ADAM9 alters T cell metabolism to promote the generation of Th17 cell differentiation.

View Article and Find Full Text PDF

Accurate identification of fetal torso ultrasound planes is essential in pre-natal examinations, as it plays a critical role in the early detection of severe fetal malformations and this process is heavily dependent on the clinical expertise of health care providers. However, the limited number of medical professionals skilled at identification and the complexity of fetal plane screening underscore the need for efficient diagnostic support tools. Clinicians often encounter challenges such as image artifacts and the intricate nature of fetal planes, which require adjustments to image gain and contrast to obtain clearer diagnostic information.

View Article and Find Full Text PDF