Diabetic kidney disease (DKD) is the leading cause of end stage kidney failure worldwide, of which cellular insulin resistance is a major driver. Here, we study key human kidney cell types implicated in DKD (podocytes, glomerular endothelial, mesangial and proximal tubular cells) in insulin sensitive and resistant conditions, and perform simultaneous transcriptomics and proteomics for integrated analysis. Our data is further compared with bulk- and single-cell transcriptomic kidney biopsy data from early- and advanced-stage DKD patient cohorts.
View Article and Find Full Text PDFInsulin signaling to the glomerular podocyte via the insulin receptor (IR) is critical for kidney function. In this study we show that near-complete knockout of the closely related insulin-like growth factor 1 receptor (IGF1R) in podocytes is detrimental, resulting in albuminuria and podocyte cell death . In contrast, partial podocyte IGF1R knockdown confers protection against doxorubicin-induced podocyte injury.
View Article and Find Full Text PDFGene therapy for kidney diseases has proven challenging. Adeno-associated virus (AAV) is used as a vector for gene therapy targeting other organs, with particular success demonstrated in monogenic diseases. We aimed to establish gene therapy for the kidney by targeting a monogenic disease of the kidney podocyte.
View Article and Find Full Text PDFBackground: Arthrogryposis, renal dysfunction and cholestasis (ARC) syndrome is a multisystem autosomal-recessive disorder caused by defects in the VPS33B and VIPAR genes, involved in localization of apical membrane proteins. Affected children usually die by 1 year of age, often secondary to infective complications. The classic renal manifestation previously described in ARC syndrome is proximal-tubular dysfunction.
View Article and Find Full Text PDF