Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

During the in vitro fertilization and embryo transfer process, some expectant mothers may not have good embryos to choose from before the embryo transfer. Recommendations for this condition are currently unclear, and relevant clinical and neonatal outcomes are still lacking. This study analyzed the outcomes of poor-quality embryo transfers, including fetal outcomes, in the fresh cycle and frozen-thawed embryo transfer cycle. Embryos were also analyzed for abnormalities during the cleavage stage. The results indicate that in the absence of good embryos, clinicians and embryologists could advise expectant mothers to continue culturing the embryos to the blastocyst stage and undergo transfer if blastocysts are formed. This finding can also be used as a reference for many expectant mothers with frozen embryos that have not yet been thawed.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11570467PMC
http://dx.doi.org/10.1016/j.heliyon.2024.e40103DOI Listing

Publication Analysis

Top Keywords

embryo transfer
12
expectant mothers
12
neonatal outcomes
8
good embryos
8
outcomes
5
embryos
5
outcomes transfer
4
transfer strategies
4
strategies vitro
4
vitro fertilization/intracytoplasmic
4

Similar Publications

Profiling the metabolome of adenomyosis-associated infertility patients to predict the pregnancy outcome of frozen embryo transfer.

Front Endocrinol (Lausanne)

September 2025

State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University, Third Hospital, Beijing, China.

Objective: This study explores the metabolic profiles in the peripheral blood of infertile patients with adenomyosis (ADM) to identify key metabolites affecting pregnancy outcomes in these patients undergoing frozen embryo transfer (FET). Our goal is to create a metabolite-based clinical prediction model for pregnancy outcomes in adenomyosis-associated infertility.

Methods: This prospective cohort study from the Reproductive Center at Peking University Third Hospital enrolled 94 infertile patients with adenomyosis and control (CTRL) patients undergoing FET.

View Article and Find Full Text PDF

Purpose: To assess the intra-individual variability of serum progesterone (P) levels on embryo transfer (ET) day, when the same dose of intramuscular progesterone (IM-P) was used in two consecutive hormone replacement therapy (HRT) frozen embryo transfer (FET) cycles.

Methods: A total of 75 patients undergoing two consecutive HRT-FET cycles in one year performed at Bahceci Ankara IVF Center between November 2019 and February 2022 were retrospectively analyzed. Serum P levels were measured at the 117th-119th hours of support by a single laboratory.

View Article and Find Full Text PDF

Gene dysregulation impairs placental angiogenesis in allogeneic pig pregnancies.

Anim Reprod Sci

September 2025

Department of Biomedical & Clinical Sciences (BKV), BKH/Obstetrics & Gynecology, Faculty of Medicine and Health Sciences, Linköping University, Linköping SE-58185, Sweden.

Embryo transfer (ET) is a valuable reproductive technology in pigs, albeit its efficiency remains significantly lower than that of natural mating or artificial insemination (AI), owing to high embryonic death rates. Critical for embryo survival and pregnancy success is the placenta, which supports conceptus development through nutrient exchange, hormone production, and immune modulation. Alterations in placental development and function may therefore underlie the reduced efficiency of ET.

View Article and Find Full Text PDF

Background: Vitrified embryos ≤300 μm give better pregnancy rates following warming and transfer than larger ones. Embryo recovery undertaken close to when the embryo enters the uterus (Day 6-6.5) helps in the recovery of embryos ≤300 μm.

View Article and Find Full Text PDF

Improved protocol for the vitrification and warming of rat zygotes by optimizing the warming solution and oocyte donor age.

PLoS One

September 2025

Division of Reproductive Engineering, Center for Animal Resources and Development, Institute of Resource Development and Analysis, Kumamoto University, Kumamoto, Japan.

Zygotes are used to create genetically modified animals by electroporation using the CRISPR-Cas9 system. Such zygotes in rats are obtained from superovulated female rats after mating. Recently, we reported that in vivo-fertilized zygotes had higher cryotolerance and developmental ability than in vitro-fertilized zygotes in Sprague Dawley (SD) and Fischer 344 rats.

View Article and Find Full Text PDF