Enhancing substrate specificity of microbial transglutaminase for precise nanobody labeling.

Synth Syst Biotechnol

Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology and School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China.

Published: October 2024


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

transglutaminase (smTG) can be used for site-specific labeling of proteins with chemical groups. Here, we explored the use of modified smTG for the biosynthesis of nanobody-fluorophore conjugates (NFC). smTG catalyzes the conjugation of acyl donors containing glutamine with lysine-containing acceptors, which can lead to non-specific cross-linking. To achieve precise site-specific labeling, we employed molecular docking and virtual mutagenesis to redesign the enzyme's substrate specificity towards the peptide GGGGQR, a non-preferred acyl donor for smTG. Starting with a thermostable and highly active smTG variant (TGm2), we identified that single mutations G250H and Y278E significantly enhanced activity against GGGGQR, increasing it by 41 % and 1.13-fold, respectively. Notably, the Y278E mutation dramatically shifted the enzyme's substrate preference, with the activity ratio against GGGGQR versus the standard substrate CBZ-Gln-Gly rising from 0.05 to 0.93. In case studies, we used nanobodies 1C12 and 7D12 as labeling targets, catalyzing their conjugation with a synthetic fluorophore via smTG variants. Nanobodies fused with GGGGQR were successfully site-specifically labeled by TGm2-Y278E, in contrast to non-specific labeling observed with other variants. These results suggest that engineering smTG for site-specific labeling is a promising approach for the biosynthesis of antibody-drug conjugates.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11564792PMC
http://dx.doi.org/10.1016/j.synbio.2024.10.003DOI Listing

Publication Analysis

Top Keywords

site-specific labeling
12
substrate specificity
8
smtg site-specific
8
enzyme's substrate
8
smtg
7
labeling
6
enhancing substrate
4
specificity microbial
4
microbial transglutaminase
4
transglutaminase precise
4

Similar Publications

Peptide Sequence Modulating the Analytical Performance of Electrogenerated Chemiluminescence Peptide-Based Biosensors for Matrix Metalloproteinase 2.

Anal Chem

September 2025

Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, P. R. China.

Electrogenerated chemiluminescence (ECL) methods have been widely used in clinical diagnosis. Although ECL peptide-based biosensors continue to grow with good sensitivity and signal flexibility, little emphasis has been placed on the effect of the peptide sequence on ECL sensitivity. We herein studied the nuanced effects of different peptide sequences on the analytical performance of ECL peptide-based biosensors for matrix metalloproteinase 2 (MMP-2) assay, in which [(pbz)Ir(DMSO)Cl] (pbz = 3-(2-pyridyl)benzoic acid) was used as the ECL emitter while a specific peptide was used as the molecular recognition element.

View Article and Find Full Text PDF

Antigen-binding proteins, such as nanobodies, modified with functional small molecules hold great potential for applications including imaging probes, drug conjugates, and localized catalysts. However, traditional chemical labeling methods that randomly target lysine or cysteine residues often produce heterogeneous conjugates with limited reproducibility. Conventional site-specific conjugation approaches, which typically modify only the N- or C-terminus, may also be insufficient to achieve the desired functionalities.

View Article and Find Full Text PDF

The efficiency of enzymatic proteolysis is often attributed to the properties of the enzyme itself, with the substrate typically viewed as a passive participant. In this study, we demonstrate that the conformational state of the substrate critically influences proteolytic efficiency. Using human serum albumin (HSA) as a model substrate, papain as the enzyme, and urea as a controlled denaturing agent, we systematically investigated how substrate conformation might affect proteolysis.

View Article and Find Full Text PDF

Isotope-edited infrared (IR) spectroscopy is a powerful tool for probing site-specific structures and dynamics within proteins. However, the interpretation is often complicated by spectral congestion and environmental heterogeneity. In this study, vibrational exciton models combined with molecular dynamics simulations are employed to examine the frequency distributions and IR spectra of isotope-labeled local modes (ILMs) in parallel coiled-coil dimers.

View Article and Find Full Text PDF

Comprehensive evaluation of cleavable bioorthogonal probes for site-specific O-GlcNAc proteomics.

Mol Cell Proteomics

August 2025

Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington DC 20007, USA. Electronic address:

O-linked β-N-acetylglucosamine (O-GlcNAc) modification (i.e., O-GlcNAcylation) on proteins is an essential modification in physiology and pathology.

View Article and Find Full Text PDF