Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Zika virus (ZIKV) infection is primarily transmitted by mosquitoes and often asymptomatic in most individuals. Infection during pregnancy can lead to severe birth defects such as congenital microcephaly, and currently, there is no approved vaccine for ZIKV. Several studies are investigating the development of ZIKV vaccine using DNA and RNA as well as recombinant protein technologies; however, the outcomes thus far have not been consistently noteworthy. In this study, we designed an mRNA vaccine for ZIKV and evaluated its immunogenicity using a mouse model. Our vaccine, termed 3xEIII, encodes a triple repeat of domain III from the ZIKV E protein. We effectively encapsulated the mRNA within lipid nanoparticles (LNPs), administered 3xEIII to mice via two intramuscular injections, and assessed the induced humoral and cellular immune responses. Specifically, the vaccine elicited neutralizing antibodies that effectively eliminated ZIKV from the organs of challenged mice. Notably, 3xEIII conferred both protective effects and long-term immunity. In subsequent challenges conducted 40 weeks after boosting, immunized mice experienced temporary weight loss but showed significantly reduced viral titers in target organs by the 9th day post-infection. Conclusively from these findings, 3xEIII stands out as a promising noteworthy mRNA vaccine candidate for Zika virus.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.vaccine.2024.126518DOI Listing

Publication Analysis

Top Keywords

mrna vaccine
12
zika virus
12
triple repeat
8
repeat domain
8
domain iii
8
vaccine zikv
8
vaccine
7
zikv
6
immunogenicity protection
4
protection triple
4

Similar Publications

Sea perch is one of the most important fish species farmed in China. However, the frequent outbreak of viral diseases induced by sea perch iridovirus (SPIV) always caused high mortality and heavy economic losses in sea perch aquaculture. Up to now, no effective countermeasures against SPIV infection have been established.

View Article and Find Full Text PDF

A Safe and Broad-spectrum SARS-CoV-2 mRNA Vaccine with a New Delivery System for In-situ Expression.

Virol Sin

September 2025

State Key Laboratory of Virology and Biosafety, RNA Institute, College of Life Sciences and Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, 430072, China; Institute for Vaccine Research at Animal Bio-safety Level Ⅲ Laboratory, Wuhan University, Wuhan, 430071, China.

Since the outbreak of SARS-CoV-2 in late 2019, the cumulative number of confirmed cases worldwide has surpassed 778 million, and the number of deaths has exceeded 7 million, posing a significant threat to human life and health while inflicting enormous losses on the global economy. At the stage where sequential immunization is recommended, there is a pressing demand for mRNA vaccines that can be rapidly adapted to new sequences, are easy to industrialize, and exhibit high safety and effectiveness. We developed a lipid nanoparticle (LNP) system, designated as WNP, which facilitates essentially in situ expression at the injection site and results in lower levels of pro-inflammatory factors in the liver, thus enhancing its safety compared to liver-targeted alternatives.

View Article and Find Full Text PDF

For some of the COVID-19 vaccines, the drug substances released to market were manufactured differently than those used in clinical trials. Manufacturing nucleoside-modified mRNA (modRNA) for commercial COVID-19 vaccines relies on RNA polymerase transcription of a plasmid DNA template. Previous studies identified high levels of plasmid DNA in vials of modRNA vaccines, suggesting that the removal of residual DNA template is problematic.

View Article and Find Full Text PDF

Chitosan polyplexes for targeted gene delivery: From mechanisms to clinical applications.

Carbohydr Polym

November 2025

Department of Pharmaceutics, Parul Institute of Pharmacy, Faculty of Pharmacy, Parul University, Waghodia, Vadodara, 391760, Gujarat, India; Centre for Research Impact & Outcome, Chitkara College of Pharmacy, Chitkara University, Rajpura, 140401, Punjab, India; Faculty of Pharmacy, Silpakorn Univers

As a diverse natural polymer called Chitosan, it created ground-breaking advancements in nucleic acid therapeutic delivery techniques for handling essential DNA and RNA delivery hurdles. The article investigates how nucleic acids form stable polyplexes with chitosan through electrostatic bonds, as well as explores their chemical and biological properties. The review explores how molecular weight, combined with the degree of deacetylation, combined with advanced functionalization strategies, help enhance delivery results.

View Article and Find Full Text PDF

Protecting the future of vaccine development amidst US funding withdrawal for mRNA vaccine research.

Lancet Microbe

September 2025

Centre for Clinical Microbiology, Division of Infection and Immunity, University College London, London, UK; NIHR Biomedical Research Centre, UCL Hospitals NHS Foundation Trust, London NW3 OPQ, UK. Electronic address:

View Article and Find Full Text PDF