98%
921
2 minutes
20
Formaldehyde (FA) is a reactive toxic volatile organic compound (VOC), produced both exogenously from the environment and endogenously within most organisms, and poses significant health risks to humans at elevated concentrations. Consequently, the development of reliable and sensitive FA sensing technologies is crucial for environmental monitoring, industrial safety, and public health protection. This review will provide a concise overview of FA sensing methodologies, highlighting key principles, sensing mechanisms, and recent advancements. The main aim of this review article is to comprehensively discuss recent advancements in FA sensors utilizing small molecules, nanoparticles, organic materials, and polymers, along with their successful applications across various fields, with particular emphasis on FA sensing using polymeric probes due to their advantages over small molecular probes. Additionally, it will discuss prospects for future design and research in this area. We anticipate that this article will aid in the development of next-generation polymeric FA sensing probed with improved physicochemical properties.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11559022 | PMC |
http://dx.doi.org/10.1080/14686996.2024.2423597 | DOI Listing |
Anal Chem
September 2025
Jiaxing Key Laboratory of Molecular Recognition and Sensing, College of Biological and Chemical Engineering, Jiaxing University, Jiaxing 314001, China.
Despite the promise of electrochemical biosensors in amplified nucleic acid diagnostics, existing high-sensitivity platforms often rely on a multilayer surface assembly and cascade amplification confined to the electrode interface. These stepwise strategies suffer from inefficient enzyme activity, poor mass transport, and inconsistent probe orientation, which compromise the amplification efficiency, reproducibility, and practical applicability. To address these limitations, we report a programmable dual-phase electrochemical biosensing system that decouples amplification from signal transduction.
View Article and Find Full Text PDFMikrochim Acta
September 2025
College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, China.
As the most dangerous mycotoxin, aflatoxin B1 (AFB1) has caused some food safety issues to be concerned. In this study, a simultaneous detection and degradation method towards AFB1 was established. Covalent-organic frameworks (COFs) were firstly synthesized and directly in situ deposited on the stainless-steel mesh, which would trigger the free-radical polymerization of acrylamide to form a hydrogel coating.
View Article and Find Full Text PDFChem Sci
August 2025
Department of Chemistry and Biochemistry, Auburn University Auburn Alabama 36849 USA
Organic mixed ionic-electronic conducting polymers remain at the forefront of materials development for bioelectronic device applications. During electrochemical operation, structural dynamics and variations in electrostatic interactions in the polymer occur, which affect dual transport of the ions and electronic charge carriers. Such effects remain unclear due to a lack of spectroscopic methods capable of capturing these dynamics, which hinders the rational design of higher-performance polymers.
View Article and Find Full Text PDFLuminescence
September 2025
Beijing Key Laboratory of Energy Conversion and Storage Materials, Beijing, China.
A novel aggregation-induced emission (AIE) system with superior performance was successfully developed through local chemical modification from thiophene to thiophene sulfone. This approach, leveraging easily accessible tetraphenylthiophene precursors, dramatically enhances the photophysical properties in a simple oxidation step. Notably, the representative 2,3,4,5-tetraphenylthiophene sulfone (3c) demonstrates remarkable solid-state emission characteristics with a fluorescence quantum yield of 72% and an AIE factor of 240, substantially outperforming its thiophene analog.
View Article and Find Full Text PDFAnalyst
September 2025
Functional Nanomaterial-based Chemical and Biological Sensing Technology Innovation Team of Department of Education of Yunnan Province, Yunnan Minzu University, Kunming 650504, P. R. China.
Copper ions are essential elements in the human body and participate in various physiological activities in the bodies of organisms. Herein, an ultrasensitive electrochemical biosensor was developed for detection of copper ions (Cu) based on FeO@Au magnetic nanoparticles (FeO@Au MNPs) and a Cu-dependent DNAzyme assisted nicking endonuclease signal amplification (NESA) strategy. dsDNA is formed by a hybridization reaction between DNA S2 and S1 immobilized on the surface of FeO@Au MNPs.
View Article and Find Full Text PDF