98%
921
2 minutes
20
Objectives: Anteroposterior pelvic radiographs remains the most widely employed method for diagnosing developmental dysplasia of the hip. This study aims to evaluate the accuracy of an artificial intelligence model in measuring angles in pelvic radiographs of the hip. The assessment seeks to demonstrate the efficacy of the artificial intelligence model in diagnosing both developmental dysplasia of the hip and borderline developmental dysplasia of the hip through the analysis of pelvic radiographs.
Methods: A total of 1,029 patients, including 273 men and 757 women, were retrospectively included in this study. The anteroposterior pelvic radiographs were randomly divided into three sets: the training set (720 cases), the validation set (103 cases), and the test set (206 cases). Key anatomical points on the anteroposterior pelvic radiographs were identified. The Sharp, Tönnis, and Center Edge angles were calculated automatically based on the corresponding criteria. The hip development status was compared between measurements obtained from the artificial intelligence model and those defined manually by two radiologists. The area under the receiver operating characteristic curve was utilized to assess the diagnostic performance of the artificial intelligence model.
Results: The results obtained from both manual measurements and the artificial intelligence model demonstrated no significant differences in the Sharp, Tönnis, and Center edge angles (all p > 0.05). The intra-class correlation coefficients and correlation coefficient r values exceeded 0.75, indicating that both the artificial intelligence model and manual measurements exhibited good repeatability and a positive correlation. Notably, the artificial intelligence model provided measurements more faster than those conducted by radiologists (p = 0.001). The artificial intelligence model also demonstrated high diagnostic accuracy, sensitivity, and specificity for developmental dysplasia of the hip. The performance of the artificial intelligence model in diagnosing developmental dysplasia of the hip was robust. Additionally, the results from the artificial intelligence model and manual measurements were largely consistent with clinical diagnosis results (p = 0.01). The artificial intelligence model can effectively evaluate hip conditions by measuring the Sharp, Tönnis, and Center edge angles, which are consistent closely with clinical diagnosis results.
Conclusions: The results of the artificial intelligence model measurements demonstrate a high degree of consistency with those obtained through manual measurements. The angles of Sharp, Tönnis, and Center edge, as evaluated by the deep learning-based convolutional neural network model, exhibit robust diagnostic performance in identifying both developmental dysplasia of the hip and borderline developmental dysplasia of the hip. Consequently, the artificial intelligence model has the potential to fully replace manual measurements of these critical hip angles, providing a more efficient and precise alternative for diagnosing both conditions of the hip.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11562089 | PMC |
http://dx.doi.org/10.1186/s12891-024-08035-3 | DOI Listing |
Eur J Med Res
September 2025
Department of Zoology, Faculty of Science, Ain Shams University, Abbassia, Cairo, 11566, Egypt.
Nuclear receptors (NRs) are a superfamily of ligand-activated transcription factors that regulate gene expression in response to metabolic, hormonal, and environmental signals. These receptors play a critical role in metabolic homeostasis, inflammation, immune function, and disease pathogenesis, positioning them as key therapeutic targets. This review explores the mechanistic roles of NRs such as PPARs, FXR, LXR, and thyroid hormone receptors (THRs) in regulating lipid and glucose metabolism, energy expenditure, cardiovascular health, and neurodegeneration.
View Article and Find Full Text PDFBMC Oral Health
September 2025
Oral and Maxillofacial Radiology Department, Cairo university, Cairo, Egypt.
Aim: The purpose of this study was to assess the accuracy of a customized deep learning model based on CNN and U-Net for detecting and segmenting the second mesiobuccal canal (MB2) of maxillary first molar teeth on cone beam computed tomography (CBCT) scans.
Methodology: CBCT scans of 37 patients were imported into 3D slicer software to crop and segment the canals of the mesiobuccal (MB) root of the maxillary first molar. The annotated data were divided into two groups: 80% for training and validation and 20% for testing.
BMC Psychiatry
September 2025
Department of Cognitive Neuroscience, Faculty of Biology, Bielefeld University, Bielefeld, Germany.
Obsessive-compulsive disorder (OCD) is a chronic and disabling condition affecting approximately 3.5% of the global population, with diagnosis on average delayed by 7.1 years or often confounded with other psychiatric disorders.
View Article and Find Full Text PDFBMC Musculoskelet Disord
September 2025
Department of Clinical Sciences at Danderyds Hospital, Department of Orthopedic Surgery, Karolinska Institutet, Stockholm, 182 88, Sweden.
Background: This study evaluates the accuracy of an Artificial Intelligence (AI) system, specifically a convolutional neural network (CNN), in classifying elbow fractures using the detailed 2018 AO/OTA fracture classification system.
Methods: A retrospective analysis of 5,367 radiograph exams visualizing the elbow from adult patients (2002-2016) was conducted using a deep neural network. Radiographs were manually categorized according to the 2018 AO/OTA system by orthopedic surgeons.
J Cancer Res Clin Oncol
September 2025
Department of Surgery, Mannheim School of Medicine, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.
Purpose: The study aims to compare the treatment recommendations generated by four leading large language models (LLMs) with those from 21 sarcoma centers' multidisciplinary tumor boards (MTBs) of the sarcoma ring trial in managing complex soft tissue sarcoma (STS) cases.
Methods: We simulated STS-MTBs using four LLMs-Llama 3.2-vison: 90b, Claude 3.