A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Microbiome-producing SCFAs are associated with preterm birth via trophoblast function modulation. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Unlabelled: Although preterm birth (PTB) is one of the major causes of perinatal mortality and neonatal morbidity, little is known about its complex etiology. An abnormal cervicovaginal microbiome during pregnancy is associated with an increased risk of PTB. The cervicovaginal microbiota and its active metabolites, such as short-chain fatty acids (SCFAs), might be effectively used to predict and diagnose PTB. However, the roles of these proteins and the underlying mechanisms involved remain elusive. We conducted 16S rRNA gene sequencing and used a targeted metabolomics approach to study cervicovaginal swabs obtained from 51 singleton pregnancies and 52 twin pregnancies in the second trimester. Next, functional experiments were performed to investigate the roles and mechanisms of SCFAs in placental trophoblast cells (HTR8/SVneo cells). Significant cervicovaginal microbiome dysbiosis, characterized by a substantial reduction in the abundance of lactobacilli and overgrowth of anaerobes, was revealed in the second trimester and was strongly associated with subsequent PTB ( = 0.036). Among the paired samples ( = 103), acetic acid was significantly greater in the preterm group than in the term group ( = 0.047). Data obtained from integrated gas chromatography‒mass spectrometry and 16S RNA studies revealed metabolites that were distinctly associated with particular microbial communities. was the species most positively associated with acetic acid content. In addition, we identified a marker set consisting of the pregnancy type, acetic acid concentration, and community state type to accurately diagnose PTB. Acetate was associated with increased interleukin (IL)-8 and IL-6 levels and extravillous trophoblast cell migration and invasion through the activation of the extracellular signal-regulated kinase 1/2 signaling pathway in HTR8/SVneo cells. Cervicovaginal microbiota dysbiosis is an important etiological factor of PTB. The cervicovaginal microbiota and its active metabolites can be efficiently used to predict and diagnose PTB. Our findings enrich the microbiota-placenta axis theory and contribute to the development of microecological products for pregnancy.

Importance: Preterm birth (PTB) is a leading cause of infant mortality and long-term health issues, affecting millions of families worldwide. Despite its prevalence, the exact causes of PTB remain unclear. Our study reveals that certain bacteria and their metabolic byproducts in the cervicovaginal environment, specifically short-chain fatty acids (SCFAs), are linked to the risk of preterm birth. By analyzing samples from pregnant women, we found that an imbalance in the vaginal microbiota and increased levels of SCFAs are associated with changes in cells that can lead to early labor. This research provides new insights into how the microbiome influences pregnancy outcomes and highlights potential biomarkers for predicting preterm birth. Understanding these microbial influences could lead to innovative strategies for early diagnosis and prevention, ultimately improving maternal and infant health.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11633107PMC
http://dx.doi.org/10.1128/mbio.02702-24DOI Listing

Publication Analysis

Top Keywords

preterm birth
20
cervicovaginal microbiota
12
diagnose ptb
12
acetic acid
12
ptb
9
scfas associated
8
birth ptb
8
cervicovaginal microbiome
8
associated increased
8
ptb cervicovaginal
8

Similar Publications