Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Plant functional traits are indicative of plant responses to environmental changes, influencing ecosystem functions. Leaves, as a key focus in studying plant functional traits, present an area where the impact of nitrogen deposition and altered rainfall patterns on functional diversity remains ambiguous. To elucidate plant response mechanisms to environmental factors, we employed a canopy-based platform to add nitrogen, water, and their combination. We assessed the functional traits and community-weighted mean of the leaves of three dominant trees and three dominant shrubs. The results showed that nitrogen addition to the canopy significantly increased the leaf dry matter content of the Pers, but markedly decreased the specific leaf area of the Hance. The nitrogen-water interaction did not notably affect the specific leaf area and equivalent water thickness of leaves. Canopy addition of nitrogen, water, and their combined interaction substantially lowered leaf nitrogen content and markedly increased leaf C/N. The structural equation model demonstrated a significant negative correlation between leaf dry matter content, equivalent water thickness, and leaf nitrogen content, as well as between equivalent water thickness and leaf phosphorus content. Our results provide evidence for the adaptation of plants to the environment and different strategies for resource and energy utilization.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11524285 | PMC |
http://dx.doi.org/10.48130/forres-0024-0006 | DOI Listing |