98%
921
2 minutes
20
The polychlorinated dibenzo-p-dioxins/furans (PCDD/Fs) and dioxin-like polychlorinated biphenyls (dl-PCBs) are worldwide contaminants, and they tend to accumulate in wide variety of matrices. Therefore, due to the highest accumulation rate and recalcitrancy, their precise quantification makes significant concern about their toxicological effects on both humans and organisms. The objective of the study is that using hydrogen carrier gas instead of helium in gas chromatography with triple quadrupole (GC-MS/MS) systems could contribute to improvements on the analysis of dl-PCBs and PCDD/Fs in environmental matrices. The study evaluates the performance of the analysis time under the desired chromatographic resolution criteria for PCDD/Fs analysis, monitoring the plausible mass spectrum/fragmentation ratio changes, and finally the quantification limits of the targeted most toxic persistent organic compound congeners. The main advantage of using H carrier gas is that the analysis time was drastically reduced (∼2.5 times) along with improved resolution due to an increase in peak widths in ∼0.6-0.7 factor. This study emphasized that the resolution was remarkably affected by the hexa congeners of PCDD/Fs; nearly baseline separation was observed. However, the sensitivity was slightly reduced (∼6-7 fold), which affected the calibration starting concentrations (0.8-3.2 pg/μl). The acquired mass spectra indicated that the lower fragment enhancement was noticeable, particularly on higher chlorinated ones (hexa, hepta, and octa congeners). The calculated ortho-effect values (1-58) in this study are consistent with the previous results in the literature (1-66 and 1-83) and supports the conclusion about the observations of lower fragment enhancement. Despite non-detection of hydrogenation, there is a significant difference in the quant/qual ion ratios in the studied compounds between helium and hydrogen carrier gas. The finalized methodology was examined, and the performance of the hydroinert® ion source was assessed over a three-month analysis period with a real sample analysis (RSD ≤17.8 %). The results indicate that hydrogen is a potential and reliable GC-MS/MS carrier gas in dl-PCBs and PCDD/Fs for environmental matrices.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.talanta.2024.127180 | DOI Listing |
Chem Rec
September 2025
Millenium Institute on Green Ammonia as Energy Vector, Pontificia Universidad Católica de Chile, Santiago, 7820436, Chile.
Ammonia is one of the most important inputs in the global chemical industry, used primarily in fertilizers and explosives. It is increasingly recognized as a potential energy carrier. Its production is dominated by the Haber-Bosch process, which requires high energy consumption and significant capital investment, and contributes significantly to greenhouse gas emissions.
View Article and Find Full Text PDFEnviron Sci Technol
September 2025
Institut de Chimie de Clermont-Ferrand, Université Clermont Auvergne, CNRS, UMR 6296, Clermont-Ferrand 63000, France.
Pesticide contamination is a growing and alarming concern for both the environment and human health. Widely used in agriculture to control pests and disease carriers, pesticides undergo extensive long-range atmospheric transport in the gas phase, in aerosols, and, as shown here, in clouds. We measured the concentration of 32 pesticides at the puy de Dôme observatory (France) in the sub μg L to μg L range in cloud water, largely arising from regional to long-range transport that also involves pesticides currently banned for agricultural use in France.
View Article and Find Full Text PDFBiochem Biophys Res Commun
September 2025
State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, China. Electronic address:
There is an increasing population receiving radiotherapy every year, during which unexpected damage to normal tissues often occurs unavoidably. How to mitigate the radiation-induced injuries and enhance patients' life quality remains a pressing challenge. Recently, gas molecules employment has emerged as a novel therapeutic modality, garnering increasing interest from researchers.
View Article and Find Full Text PDFACS Appl Mater Interfaces
September 2025
N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS, Novosibirsk 630090, Russia.
While fluorene-containing materials are widely used in organic optoelectronics as bright emitters and hole semiconductors, their diazafluorene analogues have been poorly explored, though their nitrogen atoms could result in electron transport and bring sensory abilities. Here, we report the synthesis, characterization, and detailed study of a series of 4,5-diazafluorene-derivatives with different donor/acceptor substituents and organic semiconductors based on these molecules. The crystal structures of all the materials were solved by X-ray diffraction, indicating the presence of extensive π-stacking and anisotropic charge-transfer pathways.
View Article and Find Full Text PDFJ Colloid Interface Sci
August 2025
Laboratory of Solar Fuel, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, PR China; Chemistry Department, Faculty of Science, Fayoum University, Fayoum 63514, Egypt. Electronic address:
Post-synthetic modification (PSM) offers a promising approach for tailoring the compositional, structural, and electronic properties of covalent organic frameworks (COFs), thereby enhancing their exciton dissociation ability and facilitating charge transfer. The effectiveness of these approaches is largely compromised by the harsh conditions, complexity, and alteration of the original structure. Therefore, developing a facile yet effective PSM for modulating COFs' properties without altering the original geometry and/or structure is a challenge.
View Article and Find Full Text PDF