98%
921
2 minutes
20
There is an urgent demand for a simple yet extremely accurate biosensor to analyze tumorigenesis. Herein, we present a novel fluorescent and enzyme-free approach for detecting p53 gene cascading proximity ligation-mediated catalytic hairpin assembly and DNAzyme-assisted signal reaction. When the target p53 gene is present, the interaction between p53 and L1 and L2 chains initiates catalytic hairpin assembly and subsequently exposes DNAzyme in the P3 probe. The exposed DNAzyme binds with the loop region of the P4 probe and generates a nicking site, resulting in the release of a significant amount of ATMND that is conjugated in the stem section of P4. This leads to an amplified fluorescence response, which serves as a fluorescence signal for the detection of the p53 gene. This method allows for the accurate and sensitive identification of the p53 gene, exhibiting a linear reaction range of 1 fM to 1 nM, with a limit of detection as low as 0.23 fM. Furthermore, this fluorescent method has been utilized for the examination of clinical samples with a favorable recovery rate. Crucially, this versatile platform may be expanded to analyze different targets by changing the corresponding recognition unit, showing great potential for point-of-care testing in tumorigenesis analysis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ab.2024.115716 | DOI Listing |
Curr Cancer Drug Targets
September 2025
Department of Molecular Biology, Genetic Engineering and Biotechnology Research Institute, University of Sadat City, Sadat City, Menoufia, Egypt.
Introduction: Breast cancer is the most common malignancy among women and the second leading cause of cancer-related deaths worldwide. Resveratrol, a polyphenolic stilbene derivative found in grapes, red wine, and other plants, possesses anti-cancer properties. Various studies have reported the potential of different nanomaterials to act as radiosensitizers against tumor cells.
View Article and Find Full Text PDFEcotoxicol Environ Saf
September 2025
Key Laboratory of Green Prevention and Control of Tropical Agriculture and Forestry Disasters, School of Tropical Agriculture and Forestry, Hainan University, DanZhou 571737, China. Electronic address:
Cyantraniliprole is a widely used insecticide in rice that could induce cellular damage. However, the mechanism of cyantraniliprole induced cell apoptosis was not clear. The Split-Split-Plot analysis revealed that the expression of apoptosis-related genes was significantly impacted by exposure time, concentration, genotype, and their complex interactions.
View Article and Find Full Text PDFTransl Oncol
September 2025
The University of New Mexico, Albuquerque, NM, USA. Electronic address:
Ovarian and endometrial cancers frequently harbor a mutation in the tumor suppressor gene TP53, which occurs in over 90 % of ovarian cancers and in the most aggressive endometrial cancers. The normal tumor suppressive functions of p53 are disrupted, resulting in unregulated cell growth and therapeutic resistance to standard treatments including chemotherapy and PARP inhibitors. Hence, a novel therapeutic strategy is urgently needed for p53 mutant gynecologic cancers, and we propose that converting mutant p53 to a wild type conformation and restoring its tumor suppressive functions has the potential to greatly improve treatment.
View Article and Find Full Text PDFPhytomedicine
August 2025
Key Laboratory of Emergency and Trauma of Ministry of Education, Engineering Research Center for Hainan Biological Sample Resources of Major Diseases, the Hainan Branch of National Clinical Research Center for Cancer, the First Affiliated Hospital, Hainan Medical University, Haikou 571199, China; Ke
Background: Traditional Chinese medicine (TCM) has shown anti-tumor potential, but its molecular mechanisms remain poorly understood. This integrated bioinformatics, network pharmacology, and experimental study investigated the anti-cancer effects and mechanisms of Dendrobin A, a pharmacologically active bibenzyl compound from Dendrobium nobile, in gastric cancer (GC).
Methods: Differentially expressed genes (DEGs) were identified through analysis of the TCGA-STAD dataset.
Cell Rep
September 2025
Department of Chemical Engineering, MIT, Cambridge, MA 02139, USA. Electronic address:
Cell states evolve through the combined activity of signaling pathways and gene networks. While transcription factors can direct cell fate, these factors rely on a receptive cell state. How signaling levels contribute to the emergence of receptive cell states remains poorly defined.
View Article and Find Full Text PDF