98%
921
2 minutes
20
The global prevalence of Major Depressive Disorder (MDD) is increasing at an alarming rate, underscoring the urgent need for timely and accurate diagnoses to facilitate effective interventions and treatments. Electroencephalography remains a widely used neuroimaging technique in psychiatry, due to its non-invasive nature and cost-effectiveness. With the rise of computational psychiatry, the integration of EEG with artificial intelligence has yielded remarkable results in diagnosing depression. This review offers a comparative analysis of two predominant methodologies in research: traditional machine learning and deep learning methods. Furthermore, this review addresses key challenges in current research and suggests potential solutions. These insights aim to enhance diagnostic accuracy for depression and also foster further development in the area of computational psychiatry.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11548331 | PMC |
http://dx.doi.org/10.3390/s24216815 | DOI Listing |
J Cataract Refract Surg
July 2025
Department of Ophthalmology, West China Hospital of Sichuan University, Chengdu City, Sichuan Province, China.
Purpose: To develop and validate a multimodal deep-learning model for predicting postoperative vault height and selecting implantable collamer lens (ICL) sizes using Anterior Segment Optical Coherence Tomography (AS-OCT) and Ultrasound Biomicroscope (UBM) images combined with clinical features.
Setting: West China Hospital of Sichuan University, China.
Design: Deep-learning study.
Phys Rev Lett
August 2025
Southern University of Science and Technology, Department of Physics, State Key Laboratory of Quantum Functional Materials, and Guangdong Basic Research Center of Excellence for Quantum Science, Shenzhen 518055, China.
Quantum computing is expected to provide an exponential speedup in machine learning. However, optimizing the data loading process, commonly referred to as "quantum data embedding," to maximize classification performance remains a critical challenge. In this Letter, we propose a neural quantum embedding (NQE) technique based on deterministic quantum computation with one qubit (DQC1).
View Article and Find Full Text PDFPLoS One
September 2025
School of Computer Science, CHART Laboratory, University of Nottingham, Nottingham, United Kingdom.
Background And Objective: Male fertility assessment through sperm morphology analysis remains a critical component of reproductive health evaluation, as abnormal sperm morphology is strongly correlated with reduced fertility rates and poor assisted reproductive technology outcomes. Traditional manual analysis performed by embryologists is time-intensive, subjective, and prone to significant inter-observer variability, with studies reporting up to 40% disagreement between expert evaluators. This research presents a novel deep learning framework combining Convolutional Block Attention Module (CBAM) with ResNet50 architecture and advanced deep feature engineering (DFE) techniques for automated, objective sperm morphology classification.
View Article and Find Full Text PDFPLoS One
September 2025
Department of Computer Science, Osun State University, Osogbo, Nigeria.
Probabilistic Random Forest is an extension of the traditional Random Forest machine learning algorithm that is one of the frequently used machine learning algorithms employed for species distribution modeling. However, with the use of complex dataset for predicting the presence or absence of the species, It is essential that feature extraction is important to generate optimal prediction that can affect the model accuracy and AUC score of the model simulation. In this paper, we integrated the Genetic Algorithm Optimization technique, which is popular for its excellent feature extraction technique, to enhance the predictive performance of the PRF Model.
View Article and Find Full Text PDFPLoS One
September 2025
Department of Medicine, The Red Rogers Centre for Heart Research, Peter Munk Cardiac Centre, University Health Network, University of Toronto, Toronto, Ontario, Canada.
Background: In order to seriously impact the global burden of heart failure (HF) and coronary artery disease (CAD), identifying at-risk individuals as early as possible is vital. Risk calculator tools in wide clinical use today are informed by traditional statistical methods that have historically yielded only modest prediction accuracy.
Methods: This study uses machine learning algorithms to generate predictions models for the development and progression of severe HF and CAD.