98%
921
2 minutes
20
Micro- and nano-plastics (MNPs) and per- and polyfluoroalkyl substances (PFAS) are prevalent in ecosystems due to their exceptional properties and widespread use, profoundly affecting both human health and ecosystem. Upon entering the environment, MNPs and PFAS undergo various transformations, such as weathering, transport, and accumulation, potentially altering their characteristics and structural dynamics. Their interactions, governed by factors like hydrogen bonding, hydrophobic interactions, Van der Waals forces, electrostatic attractions, and environmental conditions, can amplify or mitigate their toxicity toward human health within ecological conditions. Several studies demonstrate the in vivo effects of PFAS and MNPs, encompassing growth and reproductive impairments, oxidative stress, neurotoxicity, apoptosis, DNA damage, genotoxicity, immunological responses, behavioral changes, modifications in gut microbiota, and histopathological alterations. Moreover, in vitro investigations highlight impacts on cellular uptake, affecting survival, proliferation, membrane integrity, reactive oxygen species (ROS) generation, and antioxidant responses. This review combines knowledge on the co-existence and adsorption of PFAS and MNPs in the environment, defining their combined in vivo and in vitro impacts. It provides evidence of potential human health implications. While significant research originates from China, Europe, and the USA, studies from other regions are limited. Only freshwater and marine organisms and their impacts are extensively studied in comparison to terrestrial organisms and humans. Nonetheless, detailed investigations are lacking regarding their fate, combined environmental exposure, mode of action, and implications in human health studies. Ongoing research is imperative to comprehensively understand environmental exposures and interaction mechanisms, addressing the need to elucidate these aspects thoroughly.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s10661-024-13292-9 | DOI Listing |
J Clin Invest
September 2025
Department of Clinical and Biomedical Sciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, United Kingdom.
Understanding the genetic causes of diseases affecting pancreatic β cells and neurons can give insights into pathways essential for both cell types. Microcephaly, epilepsy and diabetes syndrome (MEDS) is a congenital disorder with two known aetiological genes, IER3IP1 and YIPF5. Both genes encode proteins involved in endoplasmic reticulum (ER) to Golgi trafficking.
View Article and Find Full Text PDFJ Clin Invest
September 2025
Department of Cellular and Molecular Medicine, UCSD, La Jolla, United States of America.
3-O-sulfation of heparan sulfate (HS) is the key determinant for binding and activation of Antithrombin III (AT). This interaction is the basis of heparin treatment to prevent thrombotic events and excess coagulation. Antithrombin-binding HS (HSAT) is expressed in human tissues, but is thought to be expressed in the subendothelial space, mast cells, and follicular fluid.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
September 2025
State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug De
Proliferative retinopathy is a leading cause of irreversible blindness in humans; however, the molecular mechanisms behind the immune cell-mediated retinal angiogenesis remain poorly elucidated. Here, using single-cell RNA sequencing in an oxygen-induced retinopathy (OIR) model, we identified an enrichment of sorting nexin (SNX)-related pathways, with SNX3, a member of the SNX family that is involved in endosomal sorting and trafficking, being significantly upregulated in the myeloid cell subpopulations of OIR retinas. Immunostaining showed that SNX3 expression is markedly increased in the retinal microglia/macrophages of mice with OIR, which is mainly located within and around the neovascular tufts.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
September 2025
Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202.
Retinal ganglion cells (RGCs) are highly compartmentalized neurons whose long axons serve as the sole connection between the eye and the brain. In both injury and disease, RGC degeneration occurs in a similarly compartmentalized manner, with distinct molecular and cellular responses in the axonal and somatodendritic regions. The goal of this study was to establish a microfluidic-based platform to investigate RGC compartmentalization in both health and disease states.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
September 2025
Centre for Experimental Medicine & Rheumatology, William Harvey Research Institute and Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, United Kingdom.
MS4A4A belongs to the MS4A tetraspan protein superfamily and is selectively expressed by the monocyte-macrophage lineage. In this study, we aimed to evaluate the role of MS4A4A+ macrophages in rheumatoid arthritis (RA) pathogenesis and response to treatment. RNA sequencing and immunohistochemistry of synovial samples from either early treatment-naïve or active chronic RA patients showed that MS4A4A expression positively correlated with synovial inflammation.
View Article and Find Full Text PDF