98%
921
2 minutes
20
Background: Recent studies have underscored the biological significance of RNA modifications in tumorigenicity and progression. However, the potential roles of RNA modifications in immune regulation and the formation of the tumor microenvironment (TME) in head and neck squamous carcinoma (HNSC) remain unclear.
Methods: We collected 199 untreated HNSC samples and clinicopathological data from Fujian Provincial Cancer Hospital. MeRIP-seq and RNA-seq were performed to generate methylation and gene expression profiles, respectively. Consensus molecular subtyping was employed to identify prognosis-related genes and RNA modification patterns in HNSC. Experiments confirmed the potential oncogenic behavior influenced by key genes. Molecular subtypes were identified through consensus clustering and validated using external cohort validation sets.
Results: Among the RNA modification-related genes, IGF2BP1 emerged as the most prognostic. HNSC patients were categorized into high and low IGF2BP1 expression groups. High-expressing patients exhibited poorer survival and reduced chemosensitivity, coupled with increased tumor mutational burden, low PD-L1 expression, and limited immune cell infiltration, indicative of aggressive disease. Analysis revealed two distinct RNA modification patterns associated with IGF2BP1 expression: biosynthetically intense type (BIT) and oncogenically active type (OAT), each characterized by distinct clinical features, outcomes, and biological pathways. In an independent immunotherapy cohort, BIT patients displayed enhanced immune responses and sustained clinical benefits.
Conclusions: This study highlights the crucial link between RNA modification and TME diversity. Evaluating RNA modification in tumors improves our understanding of TME features and supports the development of effective immunotherapy strategies.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11540706 | PMC |
http://dx.doi.org/10.3389/fimmu.2024.1469435 | DOI Listing |
Plant Cell Environ
September 2025
State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Ministry of Education of China-Hebei Province Joint Innovation Center for Efficient Green Vegetable Industry, International Joint R & D Center of Hebei Prov
As essential sources of vegetables, oilseeds, and forage, Brassica crops exhibit complex epigenetic regulation mechanisms involving histone modifications, DNA modifications, RNA modifications, noncoding RNAs, and chromatin remodelling. The agronomic traits and environmental adaptability of crops are regulated by both genetic and epigenetic mechanisms, while epigenetic variation can affect plant phenotypes without changing gene sequences. Furthermore, the impact of epigenetic modifications on plant phenotype has accelerated the crop breeding process.
View Article and Find Full Text PDFPhysiol Rep
September 2025
Department of Physiology, Nutrition and Biomechanics, Swedish School of Sport and Health Sciences, Stockholm, Sweden.
Human skeletal muscle comprises slow-twitch (type I) and fast-twitch (type II) fibers. Fiber type-specific analyses often require manual isolation of fibers, necessitating effective tissue preservation. While freeze-drying remains the standard, alternative preservation methods such as RNAlater and RNAlater-ICE are increasingly used.
View Article and Find Full Text PDFBiol Pharm Bull
September 2025
Department of Intensive Care Unit, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310007, China.
Ferroptosis is involved in the progression of sepsis-induced acute lung injury (ALI). Kaempferol is a flavonoid compound that can protect against ALI. 5-Methylcytosine (m5C) is involved in the pathogenesis of sepsis.
View Article and Find Full Text PDFNucleic Acids Res
September 2025
Department of Microbiology, Institute of Biology, University of Kassel, 34132 Kassel, Germany.
Casein kinase 1 (CK1) family members are crucial for ER-Golgi trafficking, calcium signalling, DNA repair, transfer RNA (tRNA) modifications, and circadian rhythmicity. Whether and how substrate interactions and kinase autophosphorylation contribute to CK1 plasticity remains largely unknown. Here, we undertake a comprehensive phylogenetic, cellular, and molecular characterization of budding yeast CK1 Hrr25 and identify human CK1 epsilon (CK1ϵ) as its ortholog.
View Article and Find Full Text PDFNucleic Acids Res
September 2025
Systems Medicine of Infectious Disease (P5), Robert Koch Institute, 13353 Berlin, Germany.
Transfer RNA (tRNA) plays an essential role in protein translation, and tRNA modifications are important to their function. Recently, nanopore direct RNA sequencing (dRNA-seq) has shown promising results in the detection of complex tRNA modifications. However, its wider adoption in the tRNA field has been limited by a lack of (de)multiplexing solutions.
View Article and Find Full Text PDF