98%
921
2 minutes
20
An abnormally organized brain spatial network is linked to the development of various central nervous system (CNS) disorders, including neurodegenerative diseases and neuropsychiatric disorders. However, the complicated molecular mechanisms of these diseases remain unresolved, making the development of treatment strategies difficult. A novel molecular imaging technique, called mass spectrometry imaging (MSI), captures molecular information on the surface of samples . With MSI, multiple compounds can be simultaneously visualized in a single experiment. The high spatial resolution enables the simultaneous visualization of the spatial distribution and relative content of various compounds. The wide application of MSI in biomedicine has facilitated extensive studies on CNS disorders in recent years. This review provides a concise overview of the processes, applications, advantages, and disadvantages, as well as mechanisms of the main types of MSI. Meanwhile, this review summarizes the main applications of MSI in studying CNS diseases, including Alzheimer's disease (AD), CNS tumors, stroke, depression, Huntington's disease (HD), and Parkinson's disease (PD). Finally, this review comprehensively discusses the synergistic application of MSI with other advanced imaging modalities, its utilization in organoid models, its integration with spatial omics techniques, and provides an outlook on its future potential in single-cell analysis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d4ay01205d | DOI Listing |
FASEB J
September 2025
Department of Hematology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, People's Republic of China.
Epilepsy is a common chronic nervous system disease that threatens human health. However, the role of FOXC1 and its relations with pyroptosis have not been fully studied in epilepsy. Sprague-Dawley rats were obtained for constructing temporal lobe epilepsy (TLE) models.
View Article and Find Full Text PDFChild Psychiatry Hum Dev
September 2025
Department of Psychology, University of California, Los Angeles, CA, USA.
Youth anxiety and depression are rising rapidly worldwide, highlighting the need for efficient school-based assessment tools across sociocultural contexts. The Revised Child Anxiety and Depression Scale (RCADS) is one of the most widely used screening measures, with demonstrated cross-cultural applicability. However, its psychometric properties have rarely been evaluated in Chinese populations.
View Article and Find Full Text PDFNeurochem Res
September 2025
International Translational Neuroscience Research Institute, Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang, China.
The concept of the central nervous system (CNS) reserve emerged from the mismatch often observed between the extent of brain pathology and its clinical manifestations. The cognitive reserve reflects an "active" capacity, driven by the plasticity of CNS cellular components and shaped by experience, learning, and memory processes that increase resilience. We propose that neuroglial cells are central to defining this resilience and cognitive reserve.
View Article and Find Full Text PDFJ Med Chem
September 2025
Applied Pharmaceutical Science, Inc., Building 10-1, No.2, Jingyuan North Street, BDA, Beijing 100176, China.
This study reports the discovery and preclinical activity of APS03118, a novel selective RET inhibitor featuring a novel tricyclic pyrazolo[3',4':3,4]pyrazolo[1,5-]pyridine hinge-binding scaffold designed to overcome acquired resistance to first-generation selective RET inhibitors (SRIs). By enhancing hydrogen bonding with conserved hinge residues (Glu805, Ala807), APS03118 potently inhibits wild-type RET and diverse resistance mutations, including solvent-front (G810R/S/C), gatekeeper (V804M/L/E), roof (L730I/M), and hinge (Y806C/N/H) variants. In preclinical models, APS03118 induced complete tumor regression in KIF5B-RET and CCDC6-RET V804 M patient-derived xenografts (PDXs) and significantly prolonged survival in an intracranial CCDC6-RET metastasis model.
View Article and Find Full Text PDFJ Virol
September 2025
Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal, India.
High morbidity and mortality associated with human β-coronavirus (CoV) infection highlight the need to determine host responses to infection and develop anti-viral therapies. Gap junction intercellular communication (GJIC), particularly involving Connexin43 (Cx43), is vital for maintaining central nervous system (CNS) homeostasis, and disruption of GJIC is a well-documented pathogenic mechanism among β-coronaviruses. Specifically, murine β-coronavirus, mouse hepatitis virus (MHV-A59) inoculation in the mouse brain causes acute-stage CNS viral spread and chronic neuroinflammatory demyelination while causing pronounced downregulation of Cx43 at the acute stage, reflecting a critical role in CNS pathology.
View Article and Find Full Text PDF