Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

A deep understanding of non-smooth dynamics of vehicle systems, particularly with dry friction damping offer valuable insights into the design and optimization of railway vehicle systems, ultimately enhancing the safety and reliability of railway operations. In this paper, the two-parameter dynamics of a non-smooth railway wheelset system incorporating dry friction damping are investigated. The effect of the crucial parameters on the complexity of the evolution process is comprehensively exposed by identifying different dynamic responses in the two-parameter plane. In addition, the multistability and the various routes transition to chaos for the system are also discussed. It is found that dry friction induces highly complex dynamics in the system, encompassing a range of behaviors such as periodic, quasi-periodic, and chaotic motions. These intricate dynamics are a direct result of the interplay between multiple parameters, such as speed and damping coefficients, which are critical in determining the system's stability and performance. The presence of multistability further complicates the system, resulting in unpredictable transitions between different motion states.

Download full-text PDF

Source
http://dx.doi.org/10.1063/5.0231126DOI Listing

Publication Analysis

Top Keywords

dry friction
16
friction damping
12
two-parameter dynamics
8
non-smooth railway
8
railway wheelset
8
wheelset system
8
vehicle systems
8
system
5
dynamics multistability
4
multistability non-smooth
4

Similar Publications

The tribological performance of a novel nonmetallic composite casing coating is investigated under dry wear conditions and different side loads and rotational speeds. The coating is composed of a short-glass-fiber-reinforced epoxy matrix with silicon carbide, aluminum oxide, and calcium carbonate nanofillers to provide a protective barrier against contact with hardened drill pipe tool joints. The results revealed that the wear behavior was highly dependent on the applied side load and rotational speed.

View Article and Find Full Text PDF

Machinability of Basalt and Glass Fiber Hybrid Composites in Dry Drilling Using TiN/TiAlN-Coated Drill Bits.

Polymers (Basel)

August 2025

Department of Airframe and Powerplant Maintenance, Faculty of Aeronautics and Astronautics, Kocaeli University, Kocaeli 41001, Türkiye.

Drilling-induced damage in fiber-reinforced polymer composite materials was measured excavating four laminates, basalt (B), glass (G) and their two sandwich type hybrids (BGB, GBG), with 6 mm twist drills at 1520 revolutions per minute and 0.10 mm rev under dry running with an uncoated high-speed steel (HSS-R), grind-coated high-speed steel (HSS-G) or physical vapor deposition-coated (high-speed steel coated with Titanium Nitride (TiN) and Titanium Aluminum Nitride (TiAlN)) drill bits. The hybrid sheets were deliberately incorporated to clarify how alternating basalt-glass architectures redistribute interlaminar stresses during drilling, while the hard, low-friction TiN and TiAlN ceramic coatings enhance cutting performance by forming a heat-resistant tribological barrier that lowers tool-workpiece adhesion, reduces interface temperature, and thereby suppresses thrust-induced delamination.

View Article and Find Full Text PDF

In this study, a diamond/diamond-like carbon (DLC) composite coating was designed and fabricated utilizing a combination of chemical vapor deposition (CVD) and magnetron-sputtering-assisted ion beam deposition. This was designed to cope with severe problems such as high wear due to insufficient lubrication under dry sliding conditions with a single diamond. The tribological properties of the fabricated coatings under dry conditions were comparatively evaluated.

View Article and Find Full Text PDF

Bioinspired soft adhesive systems capable of stable and intelligent object manipulation are critical for next-generation robotics. In this study, a soft gripper combining an octopus-inspired suction mechanism with a frog-inspired hexagonal friction pattern was developed to enhance adhesion performance under diverse surface conditions and orientations. The hexagonal pattern, inspired by frog toe pads, contributed to improved stability against tilting and shear forces.

View Article and Find Full Text PDF

This study investigates the effect of contact force on the friction and wear behavior of copper-graphene (Cu-CuG) nanocomposites against AISI 52,100 steel. Pin-on-disk dry sliding wear tests were conducted under normal forces of 10 and 30 N, with a sliding distance of 1000 m and a linear speed of 0.1 m/s.

View Article and Find Full Text PDF