Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Unlabelled: While mineral weathering (MWe) plays a key role in plant growth promotion and soil fertility, the molecular mechanisms and the genes used by bacteria to weather minerals remain poorly characterized. Acidification-based dissolution is considered the primary mechanism used by bacteria. This mechanism is historically associated with the conversion of glucose to protons and gluconic acid through the action of particular glucose dehydrogenases (GDH) dependent on the pyrroquinoline quinone (PQQ) cofactor. Recently, bacteria lacking the GDH-PQQ system have been shown to perform the same enzymatic conversion with a glucose/methanol/choline (GMC) FAD-dependent oxidoreductase. Determining whether this particular enzyme is specific or widespread is especially important in terms of ecology and evolution. Genome analysis of the effective MWe strain PML1(12) revealed the presence of both systems (., GDH-PQQ and several GMC oxidoreductases). The combination of mutagenesis, functional assays, and geochemical analyses demonstrated the key role of one of these GMC oxidoreductases in the mineral weathering ability of strain PML1(12) and the importance of the carbon source metabolized. Mass spectrometry confirmed the conversion of glucose to gluconic acid. Phylogenetic analyses highlighted a good relatedness of this new GMC oxidoreductase with GMC oxidoreductases presenting a GDH activity in and and conferring its mineral weathering ability to the last one. Together, our analyses expand the number of bacteria capable of weathering minerals using GMC oxidoreductases, showing that such enzymes are not restricted to .

Importance: This work deciphers the molecular and genetic bases used by strain PML1(12) of to weather minerals. Through bioinformatics analyses, we identified a total of four GMC-FAD oxidoreductases in the genome of strain PML1(12) and a putative PQQ-dependent glucose dehydrogenase. Through a combination of physiological and geochemical analyses, we revealed that one of them (i.e., GMC3) was the enzyme responsible for the acidification-based mineral weathering mechanism used by strain PML1(12). To date, a single representative of this enzyme family has been identified in the effective mineral-weathering bacterial strain PMB3(1). Phylogenetic analyses revealed that this new system appeared conserved in the genus. The new findings presented in this work demonstrate that GMC oxidoreductases can have an active role in other effective MWe bacteria outside of collimonads and that are capable of weathering minerals using this type of enzyme. Our findings offer relevant information for different fields of research, such as environmental genomics, microbiology, chemistry, evolutionary biology, and soil sciences.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11654791PMC
http://dx.doi.org/10.1128/aem.01221-24DOI Listing

Publication Analysis

Top Keywords

mineral weathering
20
strain pml112
20
gmc oxidoreductases
20
acidification-based mineral
8
weathering mechanism
8
key role
8
weather minerals
8
conversion glucose
8
gluconic acid
8
effective mwe
8

Similar Publications

The streams of Alaska's Brooks Range lie within a vast (~14M ha) tract of protected wilderness and have long supported both resident and anadromous fish. However, dozens of historically clear streams have recently turned orange and turbid. Thawing permafrost is thought to have exposed sulfide minerals to weathering, delivering iron and other potentially toxic metals to aquatic ecosystems.

View Article and Find Full Text PDF

With the rapid development of the nuclear medicine business worldwide, the removal of iodine-131 from specific contaminated environments to protect public health has important application prospects. In this study, the surface decontamination mechanism of Ce(IV)/HNO3 as a decontaminant for iodine-131-contaminated nonmetallic materials was investigated by using an orthogonal experimental method and scanning electron microscopy (SEM). During the preparation experiments with the contaminated materials, both quartz glass and ceramics reached peak activity concentration levels at 4 h of adsorption (contamination) by using immersion; the decontamination factor (DF) was selected as the test index for the decontamination experiments.

View Article and Find Full Text PDF

Bone tissue is an important load-bearing organ of the human body. Moderate exercise enhances bone mass through mechanical loading, while high-intensity exercise may suppress it. Infrared therapy improves circulation, reduces pain/inflammation, and aids tissue repair.

View Article and Find Full Text PDF

Kidney stones have a high recurrence rate-10% within 5 years and 50% within 10. Crystalluria reflects the urinary physicochemical environment and may serve as a recurrence marker, but key crystals like brushite are rarely detected under ambient conditions. This study aimed to identify novel recurrence markers by inducing crystallization through urine cooling and analyzing crystal composition.

View Article and Find Full Text PDF

Here, we explore the long-term history of chemical weathering and particle transport from the continents to the oceans by leveraging the histories of Zr/Al, Rb/Al, and Na/Al in marine sediments over the last 2000 My. We interpret these data in the context of elemental behavior in modern weathering environments and modern marine sediments. We find that from 2000 Mya to ca.

View Article and Find Full Text PDF