98%
921
2 minutes
20
Background: Fetal structural anomalies are detected by ultrasound in approximately 3 % of pregnancies. Numerous genetic diagnostic strategies have been widely applied to identify the genetic causes of prenatal abnormalities. We aimed to assess the value of simultaneous copy number variation sequencing (CNV-seq) and whole exome sequencing (WES) in diagnosing fetuses with structural anomalies.
Methods: Fetuses with structural anomalies detected by ultrasound were included for eligibility. After genetic counseling, WES and CNV-seq were performed on DNA samples of fetuses and their parents. All detected variants were evaluated for pathogenicity according to ACMG criteria, with the final diagnosis was determined based on ultrasound results and relevant family history.
Results: The diagnostic rate of 174 fetuses with prenatal ultrasound abnormalities was 26.44 %, higher than that achieved through either CNV or WES analysis alone. Furthermore, the highest diagnostic rate was observed in fetuses with multiple system anomalies, accounting for 50 % of the total diagnostic yield, followed by skeletal system anomalies at 45.45 %. Three cases with multiple system abnormalities were found to have a dual diagnosis of pathogenic CNVs and SNV variants, representing 1.72 % of the total cohort. 38 pregnant women in their third trimester of pregnancy (27 weeks+) participated in this study, and 23.68 % received a confirmed genetic diagnosis. Finally, 31 women (67.39 %) voluntarily terminated their pregnancy following the testing and extensive genetic counseling.
Conclusions: Our study demonstrated that the simultaneous CNV-seq and WES analyses are beneficial for the molecular diagnosis of underlying unexplained structural anomalies in fetuses. This strategy is more efficient in elucidating prenatal abnormalities with compound problems, such as dual diagnoses. Furthermore, the simultaneous strategy has a shorter turnaround time and is particularly suitable for families with structural anomalies found in the third trimester of pregnancy.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11535759 | PMC |
http://dx.doi.org/10.1016/j.heliyon.2024.e39392 | DOI Listing |
Phys Rev Lett
August 2025
McMaster University, Department of Physics and Astronomy, Hamilton, Ontario L8S 4M1, Canada.
Magnetic heat capacity measurements of a high-quality single crystal of the dipole-octupole pyrochlore Ce_{2}Hf_{2}O_{7} down to a temperature of T=0.02 K are reported. These show a two-peaked structure, with a Schottky-like peak at T_{1}∼0.
View Article and Find Full Text PDFMol Biol Rep
September 2025
Cytogenetics and Molecular Genetics Lab, Pathology Unit, Medical Division (BARC Hospital), Bhabha Atomic Research Centre, Anushakti Nagar, Mumbai, India.
Background: Hearing loss (HL) is one of the most common congenital anomalies and is a complex etiologically diverse condition. Molecular genetic characterization of HL remains challenging owing to the high genetic heterogeneity. This study aimed to screen for potential disease-causing genetic variations in a cohort of Indian patients with congenital bilateral severe-to-profound sensorineural HL.
View Article and Find Full Text PDFJ Magn Reson Imaging
September 2025
School of Biomedical Engineering, Guangdong Provincial Key Laboratory of Medical Image Processing and Guangdong Province Engineering Laboratory for Medical Imaging and Diagnostic Technology, Southern Medical University, Guangzhou, China.
Background: The dynamic progression of gray matter (GM) microstructural alterations following radiotherapy (RT) in patients, and the relationship between these microstructural abnormalities and cortical morphometric changes remains unclear.
Purpose: To longitudinally characterize RT-related GM microstructural changes and assess their potential causal links with classic morphometric alterations in patients with nasopharyngeal carcinoma (NPC).
Study Type: Prospective, longitudinal.
Brain Behav
September 2025
Radiology Department, Yantaishan Hospital, Yantai, Shandong, China.
Objective: To investigate the characteristics of brain structures in patients with noise-induced hearing loss (NIHL) using source-based morphometry (SBM) and to evaluate the correlation between abnormal brain regions and clinical data.
Methods: High-resolution 3D T1 structural images were acquired from 81 patients with NIHL and 74 age- and education level-matched healthy controls (HCs). The clinical data of all subjects were collected, including noise exposure time, monaural hearing threshold weighted values (MTWVs), Mini-Mental State Examination (MMSE), and Hamilton Anxiety Scale (HAMA) scores.
Front Glob Womens Health
August 2025
Department of Medical Laboratory Sciences, School of Allied Health Sciences, University of Health and Allied Sciences, Ho, Ghana.
Background: Vulvovaginal Candidiasis (VVC) is a condition commonly caused by . It is the second most common infection of the female genitalia affecting many women worldwide. Studies have identified unhealthy genital care practices to be associated with the infection among women including expectant mothers.
View Article and Find Full Text PDF