98%
921
2 minutes
20
Vascular calcification, a common complication of chronic kidney disease (CKD), remains an unmet therapeutic challenge. The trans-differentiation of vascular smooth muscle cells (VSMCs) into osteoblast-like cells is crucial in the pathogenesis of vascular calcification in CKD. Despite ferroptosis promotes vascular calcification in CKD, the upstream or downstream regulatory mechanisms involved remains unclear. In this study, we aimed to investigate the regulatory mechanism involved in ferroptosis in CKD vascular calcification. Transcriptome sequencing revealed a potential relationship between HDAC9 and ferroptosis in CKD vascular calcification. Subsequently, we observed increased expression of HDAC9 in calcified arteries of patients undergoing hemodialysis and in a rat model of CKD. We further demonstrated that knockout of HDAC9 attenuates osteogenic trans-differentiation and ferroptosis in VSMCs stimulated by high calcium and phosphorus. In addition, RSL3 exacerbated ferroptosis and osteogenic trans-differentiation of VSMCs exposed to high levels of calcium and phosphorus, and these effects were suppressed to some extent by HDAC9 knockout. In summary, our findings suggest that HDAC9 promotes VSMCs osteogenic trans-differentiation involving ferroptosis, providing new insights for the therapy of CKD vascular calcification.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11539403 | PMC |
http://dx.doi.org/10.1080/0886022X.2024.2422435 | DOI Listing |
Eur J Vasc Endovasc Surg
September 2025
School of Health and Medical Sciences, City St George's University of London, London, UK; St George's Vascular Institute, St George's Hospital, London, UK; Department of Surgery and Cancer, Imperial College London, London, UK. Electronic address:
Objective: Sex specific anatomical differences may contribute to observed disparities in outcomes and suitability for endovascular aneurysm repair (EVAR) between men and women with abdominal aortic aneurysms (AAAs). This study aimed to assess these differences using fully automated volume segmentation (FAVS) and explore implications for EVAR suitability.
Methods: This was a retrospective, multicentre cohort study of patients undergoing elective AAA repair between 2013 and 2023 in three UK tertiary centres.
Vascul Pharmacol
September 2025
Department of Orthopaedic Surgery, Orthopaedic Hospital Research Center, UCLA, Los Angeles, CA 90095, USA; Center for Cardiovascular Science, University of Edinburgh, Edinburgh, UK. Electronic address:
The walls of all embryonic, foetal, and adult blood vessels contain mesodermal progenitors, distributed as pericytes in capillaries and micro vessels, and fibroblastic cells in the tunica adventitia of larger veins and arteries. Following dissociation, selection by flow cytometry, and culture, those perivascular cells turn into bona fide mesenchymal stem cells of which they possess all attributes. In vivo, the adventitial cellular niche supports several spatially-organized subsets of mesodermal progenitors biased toward either osteo-, adipo-, or fibrogenesis, and dominated by more primitive, multi-lineage stem-like cells.
View Article and Find Full Text PDFFront Endocrinol (Lausanne)
August 2025
Northwestern University, Chicago, IL, United States.
Front Bioeng Biotechnol
August 2025
Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.
Background: Isowighteone, an isoflavonoid compound derived from L.f. (, Moraceae), has demonstrated significant anti-inflammatory properties in prior studies.
View Article and Find Full Text PDFAm J Physiol Cell Physiol
September 2025
Obesity and Comorbidities Research Center, Universidade Estadual de Campinas (UNICAMP), Campinas, SP, Brazil.
Sodium-glucose cotransporter 2 inhibitors (SGLT2i) were initially developed as glucose-lowering agents for type 2 diabetes mellitus (T2DM). However, robust clinical evidence has demonstrated that their therapeutic benefits extend beyond glycemic control. SGLT2i reduce hospitalization for heart failure (HF), slow the progression of chronic kidney disease (CKD), and provide cardiorenal protection even in individuals without diabetes but with cardiovascular disease.
View Article and Find Full Text PDF