98%
921
2 minutes
20
The RAF1-RAP1A interaction activates the MAPK/ERK pathway which is very crucial in the carcinogenesis process. This protein complex influences tumor formation, proliferation, and metastasis. Understanding aberrant interactions driven by clinical mutations is vital for targeted therapies. Hence, the current study focuses on the screening of clinically reported substitutions in the RAF1 and RAP1A genes using predictive algorithms integrated with all-atoms simulation, essential dynamics, and binding free energy methods. Survival analysis results revealed a strong association between RAF1 and RAP1A expression levels and diminished survival rates in cancer patients across different cancer types. Integrated machine learning algorithms showed that among the 134 mutations reported for these 2 proteins, only 13 and 35 were classified as deleterious mutations in RAF1 and RAP1P, respectively. Moreover, one mutation in RAF1 reported elevated levels of binding between RAF1 and RAP1P while in RAP1A, 7 mutations were reported to increase the binding affinity. The high-binding mutations, P34Q and V60F, were subjected to protein-protein coupling which confirmed the increase in the binding affinity. Wild-type and mutant RAF1-RAP1P bound complexes were subjected to molecular simulation investigation, revealing enhanced structural stability, increased compactness, and stabilized residue fluctuations of the mutant systems in contrast to the wild-type. In addition, hydrogen bonding analysis revealed a variation in the binding paradigm which further underscores the impact of these substitutions on the coupling of RAF1 and RAP1A. Principal component analysis (PCA) and free energy landscape (FEL) evaluation further determined dynamical variations in the wild-type and mutant complexes. Finally, the Gibbs free energy for each complex was estimated and found to be -71.94 ± 0.38 kcal/mol for the wild-type, -95.57 ± 0.37 kcal/mol for the V60F, and -85.76 ± 0.72 kcal/mol for P34Q complex. These findings confirm the effect of these variants on increasing the binding affinity of RAF1 to RAP1P. These mutations can therefore be targeted for cancer therapy to modulate the activity of the MAPK/ERK signaling pathway.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11809134 | PMC |
http://dx.doi.org/10.1002/prot.26759 | DOI Listing |
Anal Chem
September 2025
State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, College of Energy, Discipline of Intelligent Instrument and Equipment, State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, Xiamen University, Xiamen 361
Rolling circle amplification (RCA) has revolutionized nucleic acid detection owing to its isothermal simplicity. However, over two decades of clinical application have been hampered by off-target amplification and incompatibility with double-stranded DNA (dsDNA). Herein, a strategy, specifically cleavage of rationally designed DNA/RNA chimeric hairpin preprimer by dsDNA-targeted CRISPR/Cas12a to rlease ssRNA for initiating RCA (SCOPE-RCA), is proposed for nucleic acid identification of African swine fever virus (ASFV).
View Article and Find Full Text PDFJ Am Chem Soc
September 2025
Department of Chemistry, Rice University, 6100 Main Street, Houston, Texas 77005, United States.
Genetic code expansion (GCE) technology has primarily been devoted to the introduction of noncanonical amino acids (ncAAs) into ribosomally synthesized proteins or peptides. Its potential for modifying nonribosomal natural products remains unexplored. In this study, we introduce a novel strategy that integrates GCE with the directed evolution of cyclodipeptide synthase (CDPS) to engineer a new class of CDPSs capable of biosynthesizing cyclodipeptides containing ncAAs.
View Article and Find Full Text PDFPLoS One
September 2025
Department of Microbiology and Parasitology, Faculty of Biology - Aquatic One Health Research Center (iARCUS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain.
Uropathogenic Escherichia coli (UPEC) are among the first pathogens to colonise in catheter and non-catheter-associated urinary tract infections. However, these infections are often polymicrobial, resulting in multi-species infections that persist by forming biofilms. Living within these highly antimicrobial tolerant communities, bacteria can establish intra- and inter-specific interactions, including quorum sensing (QS)-mediated signalling mechanisms, which play a key role in biofilm establishment and maturation.
View Article and Find Full Text PDFJ Am Chem Soc
September 2025
Department of Chemistry, Rutgers University-Newark, Newark, New Jersey 07102, United States.
Carbon-hydrogen bond activation is a pillar of synthetic chemistry. While it is generally accepted that Pd is more facile than Ni in C-H activation catalysis, there are no experimental platforms available to directly compare the magnitude of C-H bond weakening between Ni and Pd prior to bond scission. This work presents the first direct measurements of C(sp)-H bond acidity (p) and bond dissociation free energy (BDFE) for a species containing a ligated alkane-palladium interaction (RCH···Pd), also known as an agostic interaction.
View Article and Find Full Text PDFRev Sci Instrum
September 2025
Department of Physics, University of Strathclyde, Glasgow, G1 1XJ, United Kingdom.
The calibration of the JET x-ray spectrometer is presented. The absolute throughput, diffractor focusing, and instrument function of the spectrometer are presented, and the quality of the ion temperature measurement is re-assessed, particularly at the lower end. The addition of a second diffractor enables the simultaneous measurements of the spectra from H- and He-like nickel, which widens the spatial coverage of the core-ion temperature measurements for high-performance plasmas at a fixed Bragg angle range.
View Article and Find Full Text PDF