Big data and artificial intelligence applied to blood and CSF fluid biomarkers in multiple sclerosis.

Front Immunol

Multiple Sclerosis Centre of Catalonia (Cemcat), Department of Neurology, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain.

Published: November 2024


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Artificial intelligence (AI) has meant a turning point in data analysis, allowing predictions of unseen outcomes with precedented levels of accuracy. In multiple sclerosis (MS), a chronic inflammatory-demyelinating condition of the central nervous system with a complex pathogenesis and potentially devastating consequences, AI-based models have shown promising preliminary results, especially when using neuroimaging data as model input or predictor variables. The application of AI-based methodologies to serum/blood and CSF biomarkers has been less explored, according to the literature, despite its great potential. In this review, we aimed to investigate and summarise the recent advances in AI methods applied to body fluid biomarkers in MS, highlighting the key features of the most representative studies, while illustrating their limitations and future directions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11527669PMC
http://dx.doi.org/10.3389/fimmu.2024.1459502DOI Listing

Publication Analysis

Top Keywords

artificial intelligence
8
fluid biomarkers
8
multiple sclerosis
8
big data
4
data artificial
4
intelligence applied
4
applied blood
4
blood csf
4
csf fluid
4
biomarkers multiple
4

Similar Publications

Background: In-hospital cardiac arrest (IHCA) remains a public health conundrum with high morbidity and mortality rates. While early identification of high-risk patients could enable preventive interventions and improve survival, evidence on the effectiveness of current prediction methods remains inconclusive. Limited research exists on patients' prearrest pathophysiological status and predictive and prognostic factors of IHCA, highlighting the need for a comprehensive synthesis of predictive methodologies.

View Article and Find Full Text PDF

Background: The ability to access and evaluate online health information is essential for young adults to manage their physical and mental well-being. With the growing integration of the internet, mobile technology, and social media, young adults (aged 18-30 years) are increasingly turning to digital platforms for health-related content. Despite this trend, there remains a lack of systematic insights into their specific behaviors, preferences, and needs when seeking health information online.

View Article and Find Full Text PDF

Artificial intelligence (AI) is transforming many fields, including healthcare and medicine. In biomarker discovery, AI algorithms have had a profound impact, thanks to their ability to derive insights from complex high-dimensional datasets and integrate multi-modal datatypes (such as omics, electronic health records, imaging or sensor and wearable data). However, despite the proliferation of AI-powered biomarkers, significant hurdles still remain in translating them to the clinic and driving adoption, including lack of population diversity, difficulties accessing harmonised data, costly and time-consuming clinical studies, evolving AI regulatory frameworks and absence of scalable diagnostic infrastructure.

View Article and Find Full Text PDF

Purpose: To evaluate inter-grader variability in posterior vitreous detachment (PVD) classification in patients with epiretinal membrane (ERM) and macular hole (MH) on spectral-domain optical coherence tomography (SD-OCT) and identify challenges in defining a reliable ground truth for artificial intelligence (AI)-based tools.

Methods: A total of 437 horizontal SD-OCT B-scans were retrospectively selected and independently annotated by six experienced ophthalmologists adopting four categories: 'full PVD', 'partial PVD', 'no PVD', and 'ungradable'. Inter-grader agreement was assessed using pairwise Cohen's kappa scores.

View Article and Find Full Text PDF

[Ai's use in health care and informed consent].

Cuad Bioet

September 2025

Universidad de A Coruña. Facultad de Derecho, Campus de Elviña, s/n, 15071, A Coruña. 981 167000 ext. 1640

The implications of the use of artificial intelligence (AI) in many areas of human existence compels us to reflect on its ethical relevance. This paper addresses the signification of its use in healthcare for patient informed consent. To this end, it first proposes an understanding of AI, as well as the basis for informed consent.

View Article and Find Full Text PDF