Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Prolonged and widespread use of pyrethroid pesticides a significant concern for human health. The initial step in pyrethroid bioremediation involves the hydrolysis of ester-bond. In the present study, the esterase genes est10 and est13, derived from Bacillus subtilis, were successfully cloned and expressed in Escherichia coli. Recombinant Est10 and Est13 were classified within esterase families VII and XIII, respectively, both of which exhibited conserved G-X-G-X-G motifs. These enzymes demonstrated the capability to degrade pyrethroids, with Est13 exhibiting superior efficiency, and thus was selected for further investigation. The degradation products of β-cypermethrin by Est13 were identified as 3-phenoxybenzoic acid, 3-phenoxybenzaldehyde, and 3-(2,2-Dichloroethenyl)- 2,2-dimethyl-cyclopropanecarboxylate, with key catalytic triads comprising Ser, Asp, and His. Notably, Est13 exhibited the highest β-cypermethrin-hydrolytic activity at 25 °C and a pH of 7.0, showing robust stability in low and medium temperature environment and a broad range of pH levels. Furthermore, Est13 displayed notable resistance to organic solvents and NaCl, coupled with wide substrate specificity. Moreover, Est13 exhibited substantial efficiency in removing β-cypermethrin residues from various food items such as milk, meat, vegetables, and fruits. These findings underscore the potential of Est13 for application in the bioremediation of pyrethroid-contaminated environments and reduction of pyrethroid residues in food products.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jhazmat.2023.132847DOI Listing

Publication Analysis

Top Keywords

bacillus subtilis
8
est13
8
est10 est13
8
est13 exhibited
8
residues food
8
novel cold-adapted
4
cold-adapted pyrethroid-degrading
4
pyrethroid-degrading esterase
4
esterase bacillus
4
subtilis application
4

Similar Publications

Analysis of essential genes in by CRISPRi and Tn-seq.

J Bacteriol

September 2025

Department of Microbiology and Immunology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA.

Essential genes are interesting in their own right and as potential antibiotic targets. To date, only one report has identified essential genes on a genome-wide scale in , a problematic pathogen for which treatment options are limited. That foundational study used large-scale transposon mutagenesis to identify 404 protein-encoding genes as likely to be essential for vegetative growth of the epidemic strain R20291.

View Article and Find Full Text PDF

Gene expression dynamics in and treated with and subsp. essential oils.

Front Microbiol

August 2025

Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy.

Essential oils (EOs) hold significant potential as antimicrobials in food, due to their high concentration of active phenolic compounds. These compounds can target bacterial cells through various mechanisms, such as membrane disruption, inhibition, and interference in virulence factors, affecting microorganisms at a genomic level. and are key foodborne bacteria that could be managed using these natural preservatives.

View Article and Find Full Text PDF

As the world's largest producer of kiwifruit, China faces significant yield and quality losses due to the widespread occurrence of kiwifruit root rot. To explore alternative biological control strategies for kiwifruit root rot, this study isolated 11 fungal isolates from diseased kiwifruit roots and identified as the primary pathogen. Additionally, a biocontrol strain, C3, was isolated from the rhizosphere of healthy kiwifruit and shown to significantly inhibit pathogen growth.

View Article and Find Full Text PDF

The objective of this investigation was to assess the biological properties of the leaf's aqueous extract of (PaAE), which is used in conventional medicine for therapeutic purposes of gastric ulcers and abdominal diseases. The content of phenolic and flavonoidic compounds was quantitatively estimated using colorimetric methods. The phenolic component profile was also evaluated using LC-MS/MS.

View Article and Find Full Text PDF

Although citrus essential oils, including lemongrass essential oil, have antibacterial, anti-biofilm, and antioxidant properties, their biological instability and poor water solubility render them unsuitable for industrial usage. Thus, this study aimed to prepare both lemongrass essential oil emulsion (LEO-E) and lemongrass essential oil nanoemulsion (LEO-NE), and evaluate their different bioactivities. Characterization by gas chromatography-mass spectroscopy (GC-MS) and evaluation of antimicrobial, antibiofilm, antioxidant, and anticancer activities were carried out.

View Article and Find Full Text PDF