[Effects of and Knockout on Ferroptosis Sensitivity of RPMI-8226 Cells].

Zhongguo Shi Yan Xue Ye Xue Za Zhi

Institute of Hematology, Xuzhou Medical University; Department of Hematology, Xuzhou Medical University Affiliated Hospital, Xuzhou 221002, Jiangsu Province, China.

Published: October 2024


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Objective: To investigate the effects of and genes on the sensitivity of multiple myeloma (MM) cell line RPMI-8226 cells to ferroptosis.

Methods: CRISPR/Cas9 technology was used to knock out the autophagy key genes and in RPMI-8226 cells. Western blot was used to identify gene knockout cells, and detect the expression changes of autophagy-related proteins P62 and LC3B. Flow cytometry was used to detect the change of sensitivity of gene knockout cells to RSL3. The content of intracellular ferrous ions and reactive oxygen species (ROS) level in gene knockout cells were detected.

Results: Western blot result confirmed that and genes were knocked out successfully in RPMI-8226 cells. The result of flow cytometry showed that the cell viability of RPMI-8226 cells was dose-dependent on different concentrations of RSL3 ( =-0.969). RSL3 (10 μmol/L) was used to induce ferroptosis in cells of control group and gene knockout groups, then the cell viability in gene knockout groups were both higher than control group after 48 hours (both < 0.001). After knocking out the and genes, the content of intracellular Fe decreased significantly compared with control group (both < 0.01), and the ROS level also decreased (both < 0.001).

Conclusion: Knockout of and genes can inhibit the ferroptosis of MM cells, and LAP pathway may be involved in the regulation.

Download full-text PDF

Source
http://dx.doi.org/10.19746/j.cnki.issn.1009-2137.2024.05.022DOI Listing

Publication Analysis

Top Keywords

gene knockout
20
rpmi-8226 cells
16
knockout cells
12
control group
12
cells
9
western blot
8
flow cytometry
8
content intracellular
8
ros level
8
cell viability
8

Similar Publications

Introduction: Knockout of the Fmo5 gene in mice led to a lean, slow-ageing phenotype characterised by the presence of 2,3-butanediol isomers in their urine and plasma. Oral treatment of wildtype mice with 2,3-butanediol led to a low cholesterol, low epididymal fat phenotype.

Objectives: Determine if significant, heterozygous coding variations in human FMO5 would give rise to similar clinical and metabolic phenotypes in humans, as in C57BL/6J mice with knockout of the Fmo5 gene and in particular, increased excretion of 2,3-butanediol.

View Article and Find Full Text PDF

DDX6 interacts with DDX3X to repress translation in microRNA-mediated silencing.

Nucleic Acids Res

September 2025

Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, United States.

DDX6 is known to repress messenger RNA (mRNA) translation and promote mRNA decay in microRNA-mediated silencing. In embryonic stem cells (ESCs), DDX6 primarily functions at the translation level, independent of mRNA destabilization; however, the precise molecular mechanism of how DDX6 represses translation remains unclear. Here, we identify DDX3X as a key downstream target of DDX6-mediated translational repression in ESCs.

View Article and Find Full Text PDF

Aortic valve stenosis is a progressive and increasingly prevalent disease in older adults, with no approved pharmacologic therapies to prevent or slow its progression. Although genetic risk factors have been identified, the contribution of epigenetic regulation remains poorly understood. Here, we demonstrated that histone deacetylase 3 (HDAC3) maintains aortic valve structure by suppressing mitochondrial biogenesis and preserving extracellular matrix integrity in valvular interstitial fibroblasts.

View Article and Find Full Text PDF

Patients with Dravet syndrome (DS) present with severe, spontaneous seizures and ataxia. While most patients with DS have variants in the sodium channel Nav1.1 α subunit gene, SCN1A, variants in the sodium channel β1 subunit gene, SCN1B, are also linked to DS.

View Article and Find Full Text PDF

Zona pellucida glycoprotein-1 (ZP1) is essential for maintaining oocyte structural integrity and facilitating fertilization. Mutations in are strongly associated with primary infertility disorders such as fertilization failure and empty follicle syndrome; however, the absence of accurate experimental models has hindered mechanistic understanding and obscured the etiological basis of -related infertility. In this study, CRISPR/Cas9-mediated genome editing was employed to generate two -edited cynomolgus macaques ( ), designated #ZP1-1 (male) and #ZP1-2 (female).

View Article and Find Full Text PDF