98%
921
2 minutes
20
Aquatic species living in productive coastal habitats with abundant primary producers have evolved in highly dynamic diel and seasonally fluctuating environments in terms of, for example, water temperature and dissolved oxygen. However, how environmental fluctuations shape the thermal tolerance of marine species is still poorly understood. Here we hypothesize that the degree of predictability of the diel environmental fluctuations in the coastal area can explain the thermal response of marine species. To test this hypothesis, we measured the thermal tolerance of 17 species of marine ectotherm from tropical, warm temperate and cold temperate latitudes under two levels of oxygen (around saturation and at supersaturation), and relate the results to their site-specific temperature and oxygen fluctuation and their environmental predictability. We demonstrate that oxygen and temperature fluctuations at tropical latitudes have a higher predictability than those at warm and cold temperate latitudes. Further, we show that marine species that are adapted to high predictability have the potential to tune their thermal performance when exposed to oxygen supersaturation, despite being constrained within a narrow safety margin. We advocate that the predictability of the environmental fluctuation needs to be considered when measuring and forecasting the response of marine animals to global warming.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11526141 | PMC |
http://dx.doi.org/10.1038/s41598-024-77621-1 | DOI Listing |
Front Med (Lausanne)
August 2025
Department of Dermatology, Hangzhou Third People's Hospital, Hangzhou Third Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, China.
Background: This study aimed to analyze the epidemiological characteristics of tinea capitis (TC) and the changing trend of the pathogenic fungal spectrum in Hangzhou to assess the thermal tolerance of these pathogenic dermatophytes at 37°C.
Methods: Clinical, demographic, and mycological data of 454 TC patients were retrospectively collected.
Results: Among children with TC, 198 were females and 201 were males, with a median age of 5 years.
Vet World
July 2025
Akkhraratchakumari Veterinary College, Walailak University, Nakhon Si Thammarat, 80160, Thailand.
Background And Aim: Probiotic viability remains a critical challenge during gastrointestinal (GI) transit, storage, and feed processing. Conventional encapsulation materials often fail under acidic and thermal stress. This study aimed to develop and characterize a novel, eco-friendly microencapsulation system using (FP) seed extract as a natural encapsulating matrix for (LP) WU2502, enhancing its functional resilience and storage stability.
View Article and Find Full Text PDFJ Therm Biol
September 2025
Department of Integrative Biology, University of South Florida, St. Petersburg, FL, USA. Electronic address:
Urbanization and climate warming have contributed to global amphibian declines in recent decades, and amphibians are particularly vulnerable to warming because temperature influences their physiological processes across all life stages. Tadpole responses to warming in tropical climates are relatively understudied, and previous studies demonstrated species-specific responses to warming temperature. Warming ponds may quicken tadpole development and increase thermal tolerances, but increasing local temperatures push populations towards their physiological limits.
View Article and Find Full Text PDFACS Infect Dis
September 2025
Animal-Derived Food Safety Innovation Team, College of Veterinary Medicine, Anhui Agricultural University, Hefei 230036, China.
The emergence of multidrug-resistant (MDR) poses a significant threat to global public health, necessitating alternative therapeutic strategies. In this study, we isolated and characterized a novel lytic bacteriophage (phage), vB_EcoM_51, from poultry farm sewage and evaluated its potential against MDR . Transmission electron microscopy revealed that the phage exhibits morphological features typical of the family, including a polyhedral head (∼66.
View Article and Find Full Text PDFMar Life Sci Technol
August 2025
Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48103 USA.
Unlabelled: Habitat fragmentation is a major cause of biodiversity loss. Fragmentation can alter thermal conditions on the remaining patches, especially at habitat edges, but few studies have examined variations in thermal tolerance of species in fragmented habitats. Ants are sensitive to both habitat fragmentation and temperature changes, and are an ideal taxon for studying these impacts.
View Article and Find Full Text PDF