98%
921
2 minutes
20
As a typical intermediate product of metastable iron oxide phase transformation, lepidocrocite is a critical player in migrating and transforming heavy metals (HMs) in soils and sediments. However, the repartitioning behavior of its associated HMs during the aging of lepidocrocite is not fully understood. We investigated the phase transformation of Cr(VI)-lepidocrocite with different exposed facets at various aging conditions (pH: 7 and 10; temperature: 25 °C and 75 °C). The results indicated that the phase transformation of lepidocrocite is facet-dependent. The rod-like lepidocrocite (R-LEP), characterized by a high ratio of (001)/(010) facets, demonstrated significant structural stability, with only minimal transformation to goethite observed over 9 days. In contrast, the dominant (010) facet in plate-like lepidocrocite (P-LEP) directly underwent the phase transformation from lepidocrocite to hematite. Meanwhile, the coordination of Cr(VI) onto the facets of lepidocrocite notably strengthened the resistance to its phase transformation. Specifically, the interaction between Cr(VI) and the (001) facets was particularly effective in inhibiting the phase transformation of lepidocrocite. In addition, the release behavior of Cr(VI) also showed lepidocrocite facet dependence. For instance, at pH = 7 and 75 °C, the release percentage of Cr(VI) on P-LEP reached up to 81 %, 1.7 times that of the release on R-LEP (46.7 %). Moreover, more non-extractable Cr speciation in P-LEP transformed into aqueous speciation and was partially redistributed on hematite. These findings provide novel insights into the role that the mineral exposed facets play in regulating the environmental behavior of Cr during the iron oxide phase transformation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2024.177268 | DOI Listing |
BackgroundRAY1216 is an alpha-ketoamide-based peptide inhibitor of severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) major protease (M). This study evaluated the absorption, distribution, metabolism and excretion of [C]-labelled RAY1216 by oral administration.Research design and methodsThis phase Ι study was designed to assess the pharmacokinetics, mass balance and metabolic pathways in 6 healthy Chinese adult men after a single fasting oral administration of 240 mL (containing 400 mg/100 μCi) [C] RAY1216.
View Article and Find Full Text PDFBiomed Phys Eng Express
September 2025
electrical engineering department, Indian Institute of Technology Roorkee, Research wing, electrical department, Roorkee, uttrakhand, 247664, INDIA.
Imagined speech classification involves decoding brain signals to recognize verbalized thoughts or intentions without actual speech production. This technology has significant implications for individuals with speech impairments, offering a means to communicate through neural signals. The prime objective of this work is to propose an innovative machine learning (ML) based classification methodology that combines electroencephalogram (EEG) data augmentation using a sliding window technique with statistical feature extraction from the amplitude and phase spectrum of frequency domain EEG segments.
View Article and Find Full Text PDFJ Am Chem Soc
September 2025
Department of Chemistry, Boston University, Boston, Massachusetts 02215, United States.
Two-dimensional (2D) materials offer a valuable platform for manipulating and studying chemical reactions at the atomic level, owing to the ease of controlling their microscopic structure at the nanometer scale. While extensive research has been conducted on the structure-dependent chemical activity of 2D materials, the influence of structural transformation during the reaction has remained largely unexplored. In this work, we report the layer-dependent chemical reactivity of MoS during a nitridation atomic substitution reaction and attribute it to the rearrangement of Mo atoms.
View Article and Find Full Text PDFBiomacromolecules
September 2025
Division of Pharmacy and Optometry, Manchester Institute of Biotechnology, School of Health Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Oxford Road, M13 9PL Manchester, U.K.
This study investigates how hydrophobic and hydrophilic modifications at the C-terminus of the base peptide, KFEFEFKFK (KbpK), affect the hydrogel macroscopic properties. By the incorporation of phenylalanine (F, hydrophobic) and lysine (K, hydrophilic) residues, four variants, KbpK-K, KbpK-F, KbpK-KF, and KbpK-FK, were designed and evaluated. pH-concentration phase diagrams and Fourier transform infrared confirmed clear links showing how peptide hydrophobicity and charge influence β-sheet formation and macroscopic phase behavior.
View Article and Find Full Text PDFACS Appl Mater Interfaces
September 2025
Department of Chemistry, University of Wisconsin-Madison, 1101 University Ave., Madison, Wisconsin 53706, United States.
Slippery liquid-infused porous surfaces (or "SLIPS") can prevent bacterial surface fouling, but they do not inherently possess the means to kill bacteria or reduce cell loads in surrounding media. Past reports show that the infused liquids in these materials can be leveraged to load and release antimicrobial agents, but these approaches are generally limited to the use of hydrophobic agents that are soluble in the infused oily phases. Here, we report the design of so-called "proto-SLIPS" that address this limitation and permit the release of highly water-soluble (or oil-insoluble) agents.
View Article and Find Full Text PDF