98%
921
2 minutes
20
nc886 is a regulatory noncoding RNA that is transcribed by RNA polymerase III (Pol III), is variably expressed in different biological contexts, and plays roles in inflammation and cancer. Epigenetic mechanisms play an intriguing role in regulating nc886 expression. As a maternally imprinted gene and metastable epiallele, nc866 exhibits polymorphic imprinting, with a methylation status that is influenced by environmental and biological factors. Consequently, the promoter DNA methylation status and the different resulting RNA expression levels of nc886 are associated with physiological and pathological conditions. In this review, we summarize the literature and explore the significance in relation to diverse roles of nc886.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11728332 | PMC |
http://dx.doi.org/10.1080/17501911.2024.2415278 | DOI Listing |
Cell Physiol Biochem
September 2025
Department of General Practice, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China, E-Mail:
Background/aims: Ubiquitin D (UBD), a member of the ubiquitin-like modifier (UBL) family, is significantly overexpressed in various cancers and is positively correlated with tumor progression. However, the role and underlying mechanisms of UBD in rheumatoid arthritis (RA) remain poorly understood. This study aimed to investigate the effects of UBD knockdown on the progression of RA.
View Article and Find Full Text PDFZhong Nan Da Xue Xue Bao Yi Xue Ban
May 2025
Department of Information Network Center, Third Xiangya Hospital, Central South University, Changsha 410013, China.
Objectives: Increasing detection of low-risk papillary thyroid carcinoma (PTC) is associated with overdiagnosis and overtreatment. N6-methyladenosine (mA)-mediated microRNA (miRNA) dysregulation plays a critical role in tumor metastasis and progression. However, the functional role of mA-miRNAs in PTC remains unclear.
View Article and Find Full Text PDFNan Fang Yi Ke Da Xue Xue Bao
August 2025
Department of Biochemistry and Molecular Biology, Bengbu Medical University, Bengbu 233030, China.
Objectives: To study the molecular mechanisms of LDH-loaded si-NEAT1 for regulating paclitaxel resistance and tumor-associated macrophage (TAM) polarization in breast cancer.
Methods: qRT-PCR and Western blotting were used to detect the expression of lncRNA NEAT1, miR-133b, and PD-L1 in breast cancer SKBR3 cells and paclitaxel-resistant SKBR3 cells (SKBR3-PR). The effects of transfection with si-NEAT1 and miR-133b mimics on MRP, MCRP and PD-L1 expressions and cell proliferation, migration and apoptosis were investigated using qRT-PCR, Western blotting, scratch and Transwell assays, and flow cytometry.
Nan Fang Yi Ke Da Xue Xue Bao
August 2025
College of Laboratory Medicine, Wannan Medical College, Wuhu 241000, China.
Objectives: To investigate the role of circular RNA circ_0000437 in regulating biological behaviors of breast cancer cells and the molecular mechanism.
Methods: Breast cancer MCF-7 and MDA-MB-231 cells were transfected with sh-circ_0000437, mimics, inhibitor, si-CTPS1, or their respective negative controls. qRT-PCR was used to detect the expression levels of circ_0000437, let-7b-5p, CTPS1, Notch1, Hes1, and Numb in breast cancer cell lines and tissues.
Nan Fang Yi Ke Da Xue Xue Bao
August 2025
Affiliated Hospital of North China University of Science and Technology, Tangshan 063000, China.
Objectives: To investigate the effect of cardiomyocytes-derived exosomes on lipopolysaccharide (LPS)-induced cardiomyocyte injury and its mechanism.
Methods: Exosomes isolated from rat cardiomyocytes with or without LPS treatment were co-cultured with rat lymphocytes. The lymphocytes with or without exosome treatment were co-cultured with LPS-induced rat cardiomyocytes for 48 h.