98%
921
2 minutes
20
To achieve high efficiency in microbial cell factories, it is crucial to redesign central carbon fluxes to ensure an adequate supply of precursors for producing high-value compounds. In this study, we employed a multi-omics approach to rearrange the central carbon flux of the pyruvate dehydrogenase (PDH) bypass, thereby enhancing the supply of intermediate precursors, specifically acetyl-CoA. This enhancement aimed to improve the biosynthesis of acetyl-CoA-derived compounds, such as terpenoids and fatty acid-derived molecules, in Saccharomyces cerevisiae. Through transcriptomic and lipidomic analyses, we identified ALD4 as a key regulatory gene influencing lipid metabolism. Genetic validation demonstrated that overexpression of the mitochondrial acetaldehyde dehydrogenase (ALDH) gene ALD4 resulted in a 20.1% increase in lipid production. This study provides theoretical support for optimising the performance of S. cerevisiae as a "cell factory" for the production of commercial compounds.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11513081 | PMC |
http://dx.doi.org/10.1038/s42003-024-07103-7 | DOI Listing |
mSystems
September 2025
Department of Biological Sciences and BioDiscovery Institute, University of North Texas, Denton, Texas, USA.
is a human fungal pathogen that survives and proliferates within phagocytic immune cells. To sustain growth in the nutrient-limited phagosome environment, the pathogenic yeast scavenges available carbon sources, which must be metabolized through central carbon metabolism for respiration and biomass synthesis. However, carbon metabolic pathways operating in the pathogenic yeast phase have not been extensively mapped.
View Article and Find Full Text PDFPlant J
September 2025
State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, Key Laboratory for Genetics and Breeding of Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Biotechnology, Beijing Fores
Floral thermogenesis in lotus (Nelumbo nucifera) is a highly energy-intensive process, requiring substantial metabolic reconfiguration and substrate input. However, the mechanisms coordinating energy substrate supply during this process remain unclear. Here, we integrated microscale proteomics, time-series transcriptomics, and mitochondrial feeding assays to elucidate the substrate provisioning strategies supporting thermogenesis in lotus receptacles.
View Article and Find Full Text PDFFree Radic Biol Med
September 2025
Department of Biomedical Sciences, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614. Electronic address:
Dietary restriction (DR), which slows aging, increases the ratio of reduced glutathione (GSH) to oxidized glutathione disulfide (GSSG) in the brain. DR increases liver cytoplasmic [NADPH]/[NADP] where much of the NADPH is generated by the folate cycle. This could also occur in astrocytes, the neural cell type with the highest folate cycle flux.
View Article and Find Full Text PDFVirulence
December 2025
Jiamusi University of Basic Medicine, Jiamusi University, Jiamusi, Heilongjiang, China.
Viral particles and proteins released during infection profoundly reshape the cellular microenvironment by disrupting host signaling, triggering inflammation, and modulating immune responses. Glucose metabolism, a critical hub for energy production and biosynthesis, is highly susceptible to viral reprogramming. This review summarizes recent findings showing that diverse viruses, including influenza virus, Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), and enteroviruses, manipulate glucose metabolic pathways to promote replication and evade immune surveillance.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
September 2025
Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, MO 63110.
Isoniazid (INH) inhibits mycolic acid synthesis in () and is a cornerstone of treatment regimens against this deadly pathogen. However, over 10% of infections are INH-resistant. The compound C10 can sensitize clinically relevant INH-resistant mutants to killing by INH.
View Article and Find Full Text PDF