98%
921
2 minutes
20
Walnut ( L.) is a widely grown nut plant worldwide, including in Guizhou Province, located in southwest China. The high quality and special taste make Guizhou walnuts, particularly those produced in Hezhang County, a "Chinese National Geographical Indication Product" that substantially contributes to the local economy and grower's income. In July 2022, a serious occurrence of leaf spot disease was observed in a walnut plantation area, Shuitang Town, Hezhang County, Guizhou Province, China (27°07'67″N, 104°64'61″E). The causal agent was identified as through morphological characterization and amplification and sequencing of the internal transcribed spacer (ITS) region, beta-tubulin () gene, and glyceraldehyde-3-phosphate dehydrogenase () gene. Koch's postulates, including re-isolation and identification, were performed to confirm its pathogenicity on healthy leaves. To our knowledge, this is the first report of causing leaf spot on walnuts worldwide. Further, to determine its biological characteristics, which could be utilized for future disease management, the effects of temperature, light, and carbon and nitrogen resources on mycelial growth, conidia production, and conidia germination and the effects of humidity on conidia germination were studied. The optimum temperature for mycelial growth of representative strain C27 was 20°C. Increasing the light period significantly decreased conidia production and conidia germination. Maltose and beef extract were the best carbon and nitrogen sources, respectively, for the pathogen. Conidia germination was enhanced at 90% humidity. screening of effective fungicides was conducted. Among the 20 screened fungicides, difenoconazole showed the best inhibition rate, with an EC (concentration for 50% of the maximal effect) of 0.0007 μg/mL. Tetramycin also showed sufficient inhibitory effects against , with an EC value of 0.0009 μg/mL. Our study provides new insights into the causal agent of walnut leaf spot in Guizhou, China, as well as the first pathogen characteristics and promising candidate fungicides for its management.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11500075 | PMC |
http://dx.doi.org/10.3389/fmicb.2024.1439487 | DOI Listing |
Plant Dis
September 2025
Cornell University, Plant Pathology & Plant-Microbe Biology, Geneva, New York, United States;
Septoria leaf spot, caused by the fungal pathogen , is a common disease of field-grown hemp ( L.). The development of disease-resistant cultivars presents a promising strategy for managing this disease.
View Article and Find Full Text PDFFront Plant Sci
August 2025
Faculty of Modern Agricultural Engineering, Kunming University of Science and Technology, Kunming, China.
Introduction: Rice is an important food crop but is susceptible to diseases. However, currently available spot segmentation models have high computational overhead and are difficult to deploy in field environments.
Methods: To address these limitations, a lightweight rice leaf spot segmentation model (MV3L-MSDE-PGFF-CA-DeepLabv3+, MMPC-DeepLabv3+) was developed for three common rice leaf diseases: rice blast, brown spot and bacterial leaf blight.
Front Plant Sci
August 2025
School of Computer Science, Yangtze University, Jingzhou, China.
Thrips can damage over 200 species across 62 plant families, causing significant economic losses worldwide. Their tiny size, rapid reproduction, and wide host range make them prone to outbreaks, necessitating precise and efficient population monitoring methods. Existing intelligent counting methods lack effective solutions for tiny pests like thrips.
View Article and Find Full Text PDFPestic Biochem Physiol
November 2025
Pesticide Science Laboratory, Agricultural University of Athens, 75 Iera Odos, 118 55 Athens, Greece.
Sensitivity assessment of 300 Cercospora beticola isolates collected from North Greece revealed that 38 % of the population was highly resistant to at least one of the demethylase inhibitors (DMIs) difenoconazole, epoxiconazole and flutriafol. Resistance factors greater than 50, 100 and 100 were calculated for the most resistant C. beticola isolates to flutriafol, epoxiconazole and difenoconazole, respectively.
View Article and Find Full Text PDFPestic Biochem Physiol
November 2025
College of Advanced Agricultural Sciences, Zhejiang Agriculture and Forest University, Hangzhou 311300, China. Electronic address:
Tobacco brown spot disease (TBSD), is a severe leaf disease caused by Alternaria alternata, and its management heavily relies on dicarboximide fungicides. This study analyzed procymidone, a dicarboximide fungicide, resistance in 96 strains of A. alternata isolated from tobacco in Guizhou Province.
View Article and Find Full Text PDF