Seed Priming with Dynamically Transformed Selenium Nanoparticles to Enhance Salt Tolerance in Rice.

Environ Sci Technol

Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266237, P R China.

Published: November 2024


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Seed priming with nanomaterials is an emerging approach for improving plant stress tolerance. Here, we demonstrated a mechanism for enhancing salt tolerance in rice under salt stress via priming with nonstimulatory nanoparticles such as selenium nanoparticles (SeNPs), distinct from stimulatory nanomaterials. Due to the dynamic transformation ability of SeNPs, SeNP priming could enhance rice salt tolerance by mediating the glutathione cycle to eliminate excess reactive oxygen species (ROS). During priming, SeNPs penetrated rice seeds and transitioned into a soluble form (99.9%) within the embryo endosperm. Subsequently, the soluble selenium (Se) was transported to rice roots and metabolized into various Se-related derivatives, including selenomethionine (SeMet), NaSeO (Se IV), selenocysteine (SeCys), and methylselenocysteine (MeSeCys). These derivatives significantly enhanced the root activities of key enzymes such as glutathione peroxidase (GSH-PX), glutathione reductase (GR), catalase (CAT), peroxidase (POD), and superoxide dismutase (SOD) by 24.97%, 47.98%, 16.23%, 16.81%, and 14.82%, respectively, thus reinforcing the glutathione cycle and ROS scavenging pathways. Moreover, these alterations induced transcriptional changes in rice seedlings, with genes involved in signal transduction, transcription factors (TFs), ROS scavenging, and protein folding being upregulated, activating signal perception and self-repair mechanisms. These findings offer valuable insights for the agricultural application of nanomaterials.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.est.4c07121DOI Listing

Publication Analysis

Top Keywords

salt tolerance
12
seed priming
8
selenium nanoparticles
8
tolerance rice
8
rice salt
8
glutathione cycle
8
ros scavenging
8
rice
6
priming dynamically
4
dynamically transformed
4

Similar Publications

Salt stress impairs photosynthetic efficiency and consequently reduces the growth, development, and grain yield of crop plants. The formation of hydrophobic barriers in the root endodermis, including the suberin lamellae and Casparian strips, is a key adaptive strategy for salt stress tolerance. In this study, we identified the role of the rice NAC transcription factor, ONAC005, in salt stress tolerance.

View Article and Find Full Text PDF

Freezing point depression due to high salt concentration is crucial for liquid water to exist on cold worlds, expanding special regions where habitats are plausible. Determination of the growth tolerances of terrestrial microbes in analog systems impacts planetary protection protocols aimed at preventing interference with life detection missions or potential native ecosystems on celestial bodies. We measured the salinity tolerances of 18 salinotolerant bacteria (Bacillus, Halomonas, Marinococcus, Nesterenkonia, Planococcus, Salibacillus, and Terribacillus).

View Article and Find Full Text PDF

With advances in next-generation sequencing technologies, individuals can seek genetic risk information for multiple conditions. However, feasibility and communication challenges could arise if offering multiple genetic tests simultaneously, such as cancer predisposition testing and carrier screening for pregnancy planning. Genetic screening introduces uncertainty from probabilistic results, ambiguous gene-disease associations, and complex variant interpretation, intertwining with psychosocial concerns impacting decision-making and emotional well-being.

View Article and Find Full Text PDF

We identified, isolated, and functionally characterized a cyclin-dependent kinase (CDK), PiPho85, from Piriformospora indica. The identified PiPho85 contains TY, PSTAIRE, protein kinase domain, and an ATP binding site which is highly conserved among the Pho85/CDK5 family protein specific for Saccharomyces cerevisiae. In a S.

View Article and Find Full Text PDF

Diverse biofilm-forming represent twelve novel species isolated from glaciers on the Tibetan Plateau.

Int J Syst Evol Microbiol

September 2025

State Key Laboratory of Microbial Diversity and Innovative Utilization, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China.

The family , encompassing the genus and related taxa, comprises diverse Gram-negative, aerobic, rod-shaped bacteria found in varied habitats, including air, soil, water and glaciers. Recent genomic-based taxonomic revisions have reclassified some species into new genera, such as and , due to polyphyletic relationships within the family . Certain species are known for forming biofilms or functioning as aerobic anoxygenic phototrophic bacteria, traits that enhance resilience in extreme environments like the cryosphere.

View Article and Find Full Text PDF