98%
921
2 minutes
20
Cryptosporidiosis is a diarrheal disease caused by infection with spp. parasites and is a leading cause of death in malnourished children worldwide. The only approved treatment, nitazoxanide, has limited efficacy in this at-risk patient population. Additional safe therapeutics are urgently required to tackle this unmet medical need. However, the development of anti-cryptosporidial drugs is hindered by a lack of understanding of the optimal compound properties required to treat this gastrointestinal infection. To address this knowledge gap, a diverse set of potent lysyl-tRNA synthetase inhibitors was profiled to identify optimal physicochemical and pharmacokinetic properties required for efficacy in a chronic mouse model of infection. The results from this comprehensive study illustrated the importance of balancing solubility and permeability to achieve efficacy in vivo. Our results establish in vitro criteria for solubility and permeability that are predictive of compound efficacy in vivo to guide the optimization of anti-cryptosporidial drugs. Two compounds from chemically distinct series (DDD489 and DDD508) were identified as demonstrating superior efficacy and prioritized for further evaluation. Both compounds achieved marked parasite reduction in immunocompromised mouse models and a disease-relevant calf model of infection. On the basis of these promising data, these compounds have been selected for progression to preclinical safety studies, expanding the portfolio of potential treatments for this neglected infectious disease.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7617456 | PMC |
http://dx.doi.org/10.1126/scitranslmed.adm8631 | DOI Listing |
Protein Pept Lett
September 2025
Center for Advanced Therapeutics, Institute of Molecular Biosciences, Mahidol University, Salaya Campus, Nakornpathom 73170, Thailand.
Background: Bacillus thuringiensis Cry toxins are well known for their insecticidal properties, primarily through the formation of ion-leakage pores via α4-α5 hairpins. His178 in helix 4 of the Cry4Aa mosquito-active toxin has been suggested to play a crucial role in its biotoxicity.
Objective: This study aimed to investigate the functional importance of Cry4Aa-His178 through experimental and computational analyses.
Int J Biol Macromol
September 2025
College of Food Science and Engineering, Jilin University, 130062, Changchun, PR China. Electronic address:
Active films displayed substantial prospects to maintain quality of tropical fruits during storage and transportation. This study developed multifunctional composite films loaded with melatonin/carvacrol nanoemulsions (MCNE) in guar gum/pullulan polysaccharide (GP) matrixes. The SEM analysis showed that MCNE was uniformly dispersed in GP film matrixes, and formed dense and continuous phase structure.
View Article and Find Full Text PDFInt J Biol Macromol
September 2025
Organization for Marine Science and Technology, Nagasaki University, Nagasaki 8528521, Japan. Electronic address:
This study characterized agar extracted from Gelidium elegans using ultrasound-assisted extraction (UAE) compared with conventional extraction (CV). The CV yielded significantly higher agar (21.50 %) than UAE (17.
View Article and Find Full Text PDFAgeing Res Rev
September 2025
Interdisciplinary Neuroscience Program, Syracuse University, Syracuse, NY 13244, USA; Department of Biomedical and Chemical Engineering, Syracuse University, Syracuse, NY 13244, USA.
Body-brain interaction (BBI) plays a critical role in coordinating the communication between peripheral organs and the brain, contributing to the comorbidity of metabolic disorders and neurological disorders. In the context of obesity, one of the key mediators driving systemic and neuroinflammatory responses is the soluble form of tumor necrosis factor (TNF), which primarily signals through TNF receptor 1 (TNFR1) to regulate inflammation and cell death. In this review, we examine how TNF/TNFR1-mediated metabolic inflammation in obesity disrupts cellular homeostasis across multiple organ systems, including the brain.
View Article and Find Full Text PDFEgypt Heart J
September 2025
Department of Medicine, Faculty of Medicine, Tbilisi State Medical University, Tbilisi, Georgia.
Background: ST-elevation myocardial infarction (STEMI) is a major cardiac event that requires rapid reperfusion therapy. The same reperfusion mechanism that minimizes infarct size and mortality may paradoxically exacerbate further cardiac damage-a condition known as reperfusion injury. Oxidative stress, calcium excess, mitochondrial malfunction, and programmed cell death mechanisms make myocardial dysfunction worse.
View Article and Find Full Text PDF