98%
921
2 minutes
20
Background Time-dependent diffusion MRI has the potential to help characterize tumor cell properties; however, to the knowledge of the authors, its usefulness for breast cancer diagnosis and prognostic evaluation is unknown. Purpose To investigate the clinical value of time-dependent diffusion MRI-based microstructural mapping for noninvasive prediction of molecular subtypes and pathologic complete response (pCR) in participants with breast cancer. Materials and Methods Participants with invasive breast cancer who underwent pretreatment with time-dependent diffusion MRI between February 2021 and May 2023 were prospectively enrolled. Four microstructural parameters were estimated using the IMPULSED method (a form of time-dependent diffusion MRI), along with three apparent diffusion coefficient (ADC) measurements and a relative ADC diffusion-weighted imaging parameter. Multivariable logistic regression analysis was used to identify parameters associated with each molecular subtype and pCR. A predictive model based on associated parameters was constructed, and its performance was assessed using the area under the receiver operating characteristic curve (AUC) and compared by using the DeLong test. The time-dependent diffusion MRI parameters were validated based on correlation with pathologic measurements. Results The analysis included 408 participants with breast cancer (mean age, 51.9 years ± 9.1 [SD]). Of these, 221 participants were administered neoadjuvant chemotherapy and 54 (24.4%) achieved pCR. The time-dependent diffusion MRI parameters showed reasonable performance in helping to identify luminal A (AUC, 0.70), luminal B (AUC, 0.78), and triple-negative breast cancer (AUC, 0.72) subtypes and high performance for human epidermal growth factor receptor 2 -enriched breast cancer (AUC, 0.85), outperforming ADC measurements (all < .05). Progesterone receptor status (odds ratio [OR], 0.08; = .02), status (OR, 3.36; = .009), and the cellularity index (OR, 0.01; = .02) were independently associated with the odds of achieving pCR. The combined model showed high performance for predicting pCR (AUC, 0.88), outperforming ADC measurements and the clinical-pathologic model (AUC, 0.73 and 0.79, respectively; < .001). The time-dependent diffusion MRI-estimated parameters correlated well with the pathologic measurements ( = 100; = 0.67-0.81; < .001). Conclusion Time-dependent diffusion MRI-based microstructural mapping was an effective method for helping to predict molecular subtypes and pCR to neoadjuvant chemotherapy in participants with breast cancer. © RSNA, 2024 See also the editorial by Partridge and Xu in this issue.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1148/radiol.240288 | DOI Listing |
Med Phys
September 2025
Department of Radiology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, P.R. China.
Background: Advanced diffusion models have been introduced to improve characterization of tissue microstructure in breast cancer assessment.
Purpose: This study aimed to evaluate the diagnostic utility of monoexponential apparent diffusion coefficient (ADC), time-dependent diffusion magnetic resonance imaging (td-dMRI), and the Continuous-Time Random-Walk (CTRW) diffusion model for differentiating breast lesions and predicting Ki-67 expression levels.
Methods: Fifty-three consecutive patients with suspected breast lesions undergoing preoperative MRI were enrolled in this prospective investigation.
Jpn J Clin Oncol
September 2025
Department of Hematology, NHO Nagoya Medical Center, 4-1-1 Sannomaru, Naka-ku, Nagoya, Aichi 460-0001, Japan.
Background: Despite several attempts to improve the prognosis of patients with diffuse large B-cell lymphoma (DLBCL), the rituximab, cyclophosphamide, doxorubicin, vincristine, and prednisolone (R-CHOP) regimen remains the standard of care in previously untreated DLBCL. A randomized phase II/III study (JCOG0601) was performed to investigate the efficacy of dose-dense weekly rituximab combined with standard CHOP (RW-CHOP). Herein, we report the final results of JCOG0601 as a post hoc assessment after an 8-year follow-up.
View Article and Find Full Text PDFSci Rep
August 2025
Computational Sciences Laboratory, Department of Mechanical and Manufacturing Engineering, University of Cyprus, Nicosia, Cyprus.
The effective delivery of pharmaceuticals to the respiratory tract is significantly influenced by the three-dimensional covalent network structure of mucus and the motility of cilia within the airway surface liquid (ASL). This study investigates the dissolution and absorption of three distinct drugs-Salbutamol sulfate (SAL), Tiotropium bromide (TIO), and Rifampicin (RIF)-in the ASL, focusing on individual particles of each drug with an initial diameter of 5 µm. A three-dimensional numerical model that characterizes mucus as a nonlinear viscoelastic fluid was employed for this analysis.
View Article and Find Full Text PDFMicromachines (Basel)
July 2025
Holcombe Department of Electrical and Computer Engineering, Clemson University, Clemson, SC 29634, USA.
Synthetic nanopores were recently demonstrated with memristive and nonlinear voltage-current behaviors, akin to ion channels in a cell membrane. Such ionic devices are considered a promising candidate for the development of brain-inspired neuromorphic computing techniques. In this work, we show the composite behavior of nanopore-array large memristors, formed with different membrane materials, pore sizes, electrolytes, and device arrangements.
View Article and Find Full Text PDFMaterials (Basel)
August 2025
College of Materials Science and Engineering, Nanjing Tech University, Nanjing 211816, China.
Mg-Sc body-centered cubic (BCC) phase-structured alloys not only exhibit superior room-temperature ductility and quasi-isotropic deformation behaviors compared to conventional hexagonal close-packed (HCP) Mg alloys in mechanical applications, but they also demonstrate a shape-memory effect that is applicable to intelligent devices. Due to the introduction of a dual-phase microstructure feature, the unveiled strengthening/toughening mechanism, and the potential benefit of Sc alloying in BCC creep deformation, it is necessary to investigate the composition and time-dependent creep behaviors of BCC Mg-Sc alloys, such as creep resistance and strain rate sensitivity at room temperature, through nano-indentation on the Mg-Sc diffusion couple. A critical finding is that as the Sc content increases from 23.
View Article and Find Full Text PDF