Profiles of brain topology for dual-functional stability in old age.

Geroscience

Department of Psychiatry and Behavioral Sciences, Stanford University, 1070 Arastradero Rd, Palo Alto, CA, 94304, USA.

Published: April 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Dual-functional stability (DFS) in cognitive and physical abilities is important for successful aging. This study examines the brain topology profiles that underpin high DFS in older adults by testing two hypotheses: (1) older adults with high DFS would exhibit a unique brain organization that preserves their physical and cognitive functions across various tasks, and (2) any individuals with this distinct brain topology would consistently show high DFS. We analyzed two cohorts of cognitively and physically healthy older adults from the UK (Cam-CAN, n = 79) and the US (CF, n = 48) using neuroimaging data and a combination of cognitive and physical tasks. Variability in DFS was characterized using k-mean clustering for intra-individual variability (IIV) in cognitive and physical tasks. Graph theory analyses of diffusion tensor imaging connectomes were used to assess brain network segregation and integration through clustering coefficients (CCs) and shortest path lengths (PLs). Using support vector machine and regression, brain topology features, derived from PLs + CCs, differentiated the high DFS subgroup from low and mix DFS subgroups with accuracies of 65.82% and 84.78% in Cam-CAN and CF samples, respectively, which predicted cross-task DFS score in CF samples at 58.06% and 70.53% for cognitive and physical stability, respectively. Results showed distinctive neural correlates associated with high DFS, notably varying regional brain segregation and integration within critical areas such as the insula, frontal pole, and temporal pole. The identified brain topology profiles suggest a distinctive neural basis for DFS, a trait indicative of successful aging. These insights offer a foundation for future research to explore targeted interventions that could enhance cognitive and physical resilience in older adults, promoting a healthier and more functional lifespan.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11978588PMC
http://dx.doi.org/10.1007/s11357-024-01396-6DOI Listing

Publication Analysis

Top Keywords

brain topology
20
cognitive physical
20
high dfs
20
older adults
16
dfs
10
dual-functional stability
8
successful aging
8
topology profiles
8
physical tasks
8
segregation integration
8

Similar Publications

A time-frequency graph fusion framework for Major Depressive Disorder diagnosis in multi-site rsfMRI data.

J Affect Disord

September 2025

College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, Liaoning, China. Electronic address:

Major Depressive Disorder (MDD) poses a significant global health threat, impairing individual functioning and increasing socioeconomic burden. Accurate diagnosis is crucial for improving treatment outcomes. This study proposes Time-Frequency Text-Attributed DeepWalk (TF-TADW), a framework for MDD classification using resting-state functional MRI data.

View Article and Find Full Text PDF

Aims: The clusterin (CLU) gene is genetically associated with Alzheimer's disease (AD), and CLU levels have been shown to positively correlate with regional Aβ deposition in the brain, including in arteries from cerebral amyloid angiopathy (CAA) patients. CLU has also been shown to alter the aggregation, toxicity and blood-brain barrier transport of amyloid beta (Aβ) and has therefore been suggested to play a key role in regulating the balance between Aβ deposition and clearance in both the brain and cerebral blood vessels. However, it remains unclear whether the role of clusterin in relation to Aβ deposition is protective or pathogenic.

View Article and Find Full Text PDF

Transdiagnostic homogeneity, and diagnostic-specific biomarkers among major depressive disorder, bipolar disorder and schizophrenia during 40 Hz auditory steady-state response: a normative modeling analysis.

J Affect Disord

September 2025

Tianjin University, Medical School, Tianjin, China; Tianjin University, Haihe Laboratory of Brain-Computer Interaction and Human-Machine Integration, Tianjin, China; Tianjin University, State Key Laboratory of Advanced Medical Materials and Medical Devices, Tianjin, China.

Background: Abnormal gamma-band auditory steady-state response (gamma-ASSR) power has been reported in major depressive disorder (MDD), bipolar disorder (BD), and schizophrenia (SZ), but distinguishing between these disorders based solely on power remains challenging. Directed functional connectivity (DFC), which captures topological patterns of causal information flow, may provide more diagnostic-specific markers. However, conventional case-control framework often disregards the substantial individual heterogeneity, yielding unreliable biomarkers.

View Article and Find Full Text PDF

Alterations in EEG functional connectivity in preterm infants: A systematic review.

Early Hum Dev

August 2025

Department of Neonatology, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai 201102, China; Center for Molecular Medicine, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai 201102, China; National Health Commission (NHC) Key Lab

Objective: To synthesise current evidence on electroencephalography-based functional connectivity in preterm infants and clarify how prematurity alters early brain-network maturation.

Methods: A PRISMA-guided search (PubMed and Web of Science, inception-Mar 2025) identified 24 studies that quantified resting-state functional connectivity or graph-theory metrics in infants born <37 weeks' gestation. Study quality was rated with a six-item electroencephalography-functional connectivity checklist (reference montage, epoch length/number, artefact rejection, volume-conduction control, multiple-comparison correction).

View Article and Find Full Text PDF

Background Neurocognitive impairment (NCI) is a common comorbidity among aging people with HIV (PWH), despite effective antiretroviral therapy (ART). Processing speed is often the earliest affected cognitive domain and may be linked to disrupted functional brain network organization. This study investigated whether the balance of segregation and integration in large-scale functional networks is associated with processing speed in middle-aged and older PWH.

View Article and Find Full Text PDF