98%
921
2 minutes
20
Elucidating plant functions and identifying crop productivity bottlenecks requires the accurate quantification of their performance. This task has been attained through photosynthetic models. However, their traditional focus on the leaf's capacity to uptake CO is becoming increasingly restrictive. Advanced bioengineering of C plants has made it possible to increase rates of CO assimilation by packing photosynthetic structures more densely within leaves. The operation of mechanisms that concentrate CO inside leaves can boost rates of assimilation while requiring a lower investment in carboxylating enzymes. Therefore, whether in the context of spontaneous plants or modern manipulation, considering trade-offs in resource utilization efficiency emerges as a critical necessity. I've developed a concise and versatile analytical model that simulates concurrent leaf and root growth by balancing instantaneous fluxes of carbon and nitrogen. Carbon is made available by leaf photosynthesis, encompassing all types of biochemistries, while nitrogen is either taken up by roots or remobilized after senescence. The allocation of leaf nitrogen between light or carbon reactions was determined using a fitting algorithm: growth maximisation was the only reliable fitting goal. Both the leaf nitrogen pool and the root-to-leaf ratio responded realistically to various environmental drivers (CO concentration, light intensity, soil nitrogen), replicating trends typically observed in plants. Furthermore, modifying the strength of CO concentrating mechanisms proved sufficient to alter the root-to-leaf ratio between C and C types. This direct and mechanistic one-to-one link convincingly demonstrates, for the first time, the functional dependence of a morphological trait on a single biochemical property.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/ppl.14535 | DOI Listing |
Angew Chem Int Ed Engl
September 2025
State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, China.
Enhancing the energy conversion efficiency of fuel cells necessitates optimization of oxygen reduction reaction (ORR) under high-voltage conditions through improved Pt catalysis. This study introduces an electrocatalyst that uniformly anchors a high loading (40 wt%) of small Pt nanoparticles (3.2 nm) on a novel support: tellurium and nitrogen co-mediated graphitized mesoporous carbon (Te-N-GMC).
View Article and Find Full Text PDFEnviron Monit Assess
September 2025
College of Ecological and Environmental Engineering, Guizhou Minzu University, Guiyang, 550025, China.
The rapid development of industry and agriculture has led to a significant increase in the toxicity and pollution of cadmium (Cd) and lead (Pb) in soil. Consequently, soil remediation employing biochar or modified biochar has emerged as a cost-effective and environmentally sustainable approach to address the issue of heavy metal (HM) ion pollution. PEI-functionalization biochar (PBC) derived from corn straw (PBCC), wood straw (PBCW), and rice straw (PBCR) was synthesized to immobilize Cd and Pb in contaminated acidic yellow soil.
View Article and Find Full Text PDFBioresour Technol
September 2025
Research Division for Water Environmental Science and Engineering, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China. Electronic address:
Constructed wetlands (CWs) treating nitrate-rich wastewater often face incomplete denitrification and elevated NO emissions due to insufficient electron donors. Pyrrhotite as a CW substrate demonstrated potential for enhancing autotrophic denitrification through coupled sulfur and iron biological oxidation. However, the impact of pyrrhotite layer positioning on regulating NO emissions and underlying mechanisms remains unclear.
View Article and Find Full Text PDFJ Hazard Mater
September 2025
School of Ecology and Environment, Zhengzhou University, Zhengzhou 450001, China; Henan Key Laboratory of Environmental Chemistry and Low Carbon Technology, Zhengzhou 450001, China. Electronic address:
Solid electrolyte cell is a novel gas purification approach, which has unique superiority in simultaneous nitrogen oxides (NO) and volatile organic compounds (VOCs) removal. The development of effective electrode materials and the comprehensive understanding of reaction mechanisms are essential to advancing this technology. In this study, LaPrBaNiO (x = 0, 0.
View Article and Find Full Text PDFMar Pollut Bull
September 2025
Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung, 804, Taiwan. Electronic address:
This study investigates high-light-tolerant Nannochloropsis oceanica Rose Bengal mutants (RB2 and RB113) for bioremediation of shrimp aquaculture wastewater (SWW) under increased temperature and light, simulating future climate change. Cultivations were performed under 250 μmol photons m·s with flue gas CO₂ supply. At 18 °C, RB mutants and wild-type (WT) strain showed similar growth.
View Article and Find Full Text PDF