Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

LiCl is a promising solid electrolyte, providing it possesses high ionic conductivity. Numerous efforts have been made to enhance its ionic conductivity through aliovalent doping. However, aliovalent substitution changes the intrinsic structure of LiCl, compromising its cost-effectiveness and electrochemical stability. Here, we report nanocrystalline LiCl embedded in amorphous AlOCl compounds with a heterogeneous structure to enhance its ionic conductivity. Nanocrystallization enlarges the LiCl unit cell, while amorphization facilitates interfacial ion transport. As a result, the amorphous AlOCl-modified LiCl nanocrystal (AlOCl-nanoLiCl) demonstrates a high ionic conductivity of 1.02 mS cm, which is 5 orders of magnitude higher than that of LiCl. Additionally, it exhibits high oxidative stability, low cost ($19.87 US kg), and low Young's modulus (2-3 GPa). When AlOCl-nanoLiCl is coupled with Li-rich cathodes (LiMnNiCoO, 4.8 V vs Li/Li), all-solid-state batteries exhibit remarkable long-term cycling stability (>1000 cycles). This work presents a novel strategy to enhance the ionic conductivity of alkaline chlorides without compromising their intrinsic advantages.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jacs.4c06498DOI Listing

Publication Analysis

Top Keywords

ionic conductivity
24
high ionic
12
enhance ionic
12
amorphous alocl
8
alocl compounds
8
nanocrystalline licl
8
licl
7
ionic
6
conductivity
6
compounds enabling
4

Similar Publications

The development of anode materials for lithium-ion batteries must meet the demands for high safety, high energy density, and fast-charging performance. TiNbO is notable for its high theoretical specific capacity, low structural strain, and exceptional fast-charging capability, attributed to its Wadsley-Roth crystal structure. However, its inherently poor conductivity has hindered its practical application.

View Article and Find Full Text PDF

Bioinspired Multifunctional Eutectogels for Skin-Like Flexible Strain Sensors with Potential Application in Deep-Learning Handwriting Recognition.

Langmuir

September 2025

Department of Light Chemical Engineering, School of Textiles Science and Engineering; Key Laboratory of Special Protective, Ministry of Education; Jiangnan University, Wuxi 214122, P. R. China.

Polymerizable deep eutectic solvents (PDES) have recently emerged as a class of solvent-free ionically conductive elastomers and are considered among the most feasible candidates for next-generation ionotronic devices. However, the fundamental challenge persists in synergistically combining high mechanical strength, robust adhesion, reliable self-healing capacity, and effective antimicrobial performance within a unified material system capable of fulfilling the rigorous operational demands of next-generation ionotronic devices across multifunctional applications. Inspired by the hierarchical structure of spider silk, HCAG eutectogels composed of acrylic acid (AA), 2-hydroxyethyl acrylate (HEA), and choline chloride (ChCl) were successfully synthesized via a one-step photopolymerization method.

View Article and Find Full Text PDF

Exploring the Effect of Anion Substitution on the Solid Ionic Conductor NaTaCl.

Inorg Chem

September 2025

Institute of Inorganic and Analytical Chemistry, University of Münster, Corrensstraße 28/30, 48149 Münster, Germany.

Isovalent anion substitution has been shown to have a tremendous effect on the transport properties in lithium halide solid ionic conductors. Although sodium-ion solid state batteries based on chloride ionic conductors have recently gathered significant attention, investigations of anion substitution in sodium containing chlorides remain scarce. Here, we investigate the role of Br isoelectronic anion substitution in a perovskite-related compound with nominal composition of NaTaCl.

View Article and Find Full Text PDF

A new family of nanostructured ternary intermetallic compounds - named the ZIP phases - is introduced in this work. The ZIP phases exhibit dualistic atomic ordering, i.e.

View Article and Find Full Text PDF

Chemically Lithiated Poly(vinylidene difluoride) with In Situ Generated LiF Nanofiller as Hybrid Artificial Layer for Stable Lithium Metal Anodes.

Small

September 2025

Key Laboratory of Electrochemical Power Sources of Hubei Province, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China.

Hybrid artificial layer based on inorganic/polymer composite endows superior toughness and mechanical strength, which can achieve high stability of lithium metal anode. However, the large particle size and uneven distribution of inorganic fillers hinder the uniform flow of lithium ions across the membrane, making it difficult to achieve smooth lithium metal deposition/stripping. In this work, a chemical lithiation-induced defluorination strategy is proposed to engineer  poly(vinylidene difluoride) (PVDF)-based artificial layers, enabling in situ incorporation of highly dispersed LiF nanofiller within the polymer matrix and precise control over the LiF content.

View Article and Find Full Text PDF