98%
921
2 minutes
20
Background: Ulcerative colitis (UC), a type of inflammatory bowel disease, presents substantial challenges in clinical treatment due to the limitations of current medications. Formononetin (FN), a naturally compound with widespread availability, exhibits anti-inflammatory, antioxidant, and immunomodulatory properties.
Purpose: This study aimed to investigate the efficacy of FN against UC and its potential regulatory mechanism.
Methods: Here, dextran sulfate sodium (DSS) was employed to replicate experimental colitis in mice with concomitant FN treatment. The distribution and localisation of CD68 and F4/80 macrophages in colonic tissues were visualized by immunofluorescence, their chemokine and inflammatory cytokine concentrations were determined by ELISA, and macrophages and M1/M2 subpopulations were determined by flow cytometry. Additionally, 16 s rRNA and LC-MS techniques were used to detect the colonic intestinal microbiota and metabolite profiles, respectively. Correlation analyses was performed to clarify the interactions between differential bacteria, metabolites and M1/M2 macrophages, and pseudo sterile mice were constructed by depletion of gut flora with quadruple antibiotics, followed by faecal microbial transplantation to evaluate its effects on colitis and M1/M2 macrophage polarisation.
Results: FN dose-dependently alleviated clinical symptoms and inflammatory injury in colonic tissues of colitis mice, with its high-dose efficacy comparable to that of 5-ASA. Concurrently, FN not only inhibited inflammatory infiltration of macrophages and their M1/M2 polarisation balance in colitis mice, but also improved the composition of colonic microbiota and metabolite profiles. However, FN lost its protective effects against DSS-induced colitis and failed to restore the equilibrium of M1/M2 macrophage differentiation following intestinal flora depletion through quadruple antibiotic treatment. Importantly, fecal microbiota transplantation from FN-treated mice restored FN's protective effects against DSS-induced colitis and reestablished its regulatory role in M1/M2 macrophage polarization.
Conclusion: Collectively, FN ameliorated UC through modulating the balance of M1/M2 macrophage polarization in a gut microbiota-dependent manner.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.phymed.2024.156153 | DOI Listing |
Adv Pharm Bull
July 2025
Department of Hematology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
Purpose: The survival and progression of multiple myeloma (MM) cells rely heavily on supportive factors and cells within the MM microenvironment, notably macrophages. The PI3K signaling pathway plays a crucial role in both myeloma cells survival and macrophage polarity, making it a potential target for altering the MM microenvironment dynamics.
Methods: In this study, the impact of LY294002, a PI3K signaling pathway inhibitor, on the viability of U266 myeloma cells in mono-culture and MM patient-derived bone marrow mononuclear cells (BM-MNCs) in co-culture was investigated.
J Burn Care Res
September 2025
Department of Burn Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
Background: Burn injuries trigger complex immune responses and gene expression changes, impacting wound healing and systemic inflammation. Understanding these changes is crucial for identifying biomarkers and therapeutic targets.
Methods: We analyzed two GEO datasets (wound tissue (GSE8056) and blood (GSE37069)) to identify differentially expressed genes (DEGs) in burn injury samples versus controls.
Int J Nanomedicine
September 2025
Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Institute of Stomatology, Nanjing University, Nanjing, Jiangsu, People's Republic of China.
Introduction: Oral squamous cell carcinoma (OSCC) has a poor prognosis due to its immunosuppressive tumor microenvironment (TME), in which tumor-associated macrophages (TAMs) play a pivotal role in promoting disease progression and therapeutic resistance. This study examines whether Prussian blue nanoparticles (PB NPs) could reprogram TAMs and block tumor-stroma communication in OSCC.
Methods: PB NPs were synthesized using polyvinylpyrrolidone-assisted coprecipitation and characterized by transmission electron microscopy, dynamic light scattering, and UV-Vis spectroscopy.
J Orthop Translat
November 2025
Key Laboratory of Tropical Translational Medicine of Ministry of Education & Key Laboratory of Brain Science Research and Transformation in Tropical Environment of Hainan Province, Hainan Provincial Stem Cell Research Institute, School of Basic Medicine and Life Sciences, Hainan Medical University,
Unlabelled: Osteoarthritis (OA) is characterized by the inability of stable and complex joint structures to function as they did, accompanied by inflammation, tissue changes, chronic pain, and neuropathic inflammation. In the past, the primary focus on the causes of joint dysfunction has been on mechanical stress leading to cartilage wear. Further researches emphasize the aging of cartilage and subchondral bone triggered cartilage lesion and osteophyte formation.
View Article and Find Full Text PDFTurk J Biol
May 2025
Izmir Biomedicine and Genome Center, İzmir, Turkiye.
Background/aim: is a polyherbal formulation of 15 ingredients. It has antiinflammatory and antimicrobial properties and are effective in managing the symptoms of H1N1 swine flu and COVID-19. However, its mechanism of action is not fully understood.
View Article and Find Full Text PDF