Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

COF engineering with a built-in, high concentration of defined N-doped sites overcomes the "black-box" drawback of conventional trial-and-error N-doping methods (used in polymeric carbon nitride and graphene), that hamper a directed evolution of functional carbon interfaces based on structure-reactivity guidelines. The cutting-edge challenge is to dissect the many complex and interdependent functions that originate from reticular N-doping, including modification of the material optoelectronics, band alignments, interfacial contacts and co-localization of active-sites, producing a multiple-set of effectors that can all play a role to regulate photocatalysis. Herein, an ON-OFF gated photocatalytic H evolution (PHE) is dictated by the Pt-N-carbon active sites and probed with a dual COF platform, based on stable β-ketoenamine connectivities made of triformylphloroglucinol (Tp) as the acceptor knots and 1,4-diaminonaphtalene (Naph) or 5,8-diaminoisoquinoline (IsoQ) as donors. Our results showcase two novel COF-Naph-Tp and COF-IsoQ-Tp frameworks featuring quasi-identical slip-stacked microporous structure, and similar surface area, band gap, light harvesting envelope up to 700 nm, fluorescence emission profile/lifetime, and PEIS response at the surface/water interface (R=16-10±4 KΩ). A divergent behaviour is indeed observed for COF-IsoQ-Tp with record photoelectrochemical outputs (J=-16 μA cm, R=3 KΩ at 0.40 V vs RHE) and two orders of magnitude higher rate of PHE (11.3 mmol g h, λ>400 nm, pH 5) compared to the inactive COF-Naph-Tp analogue. It turns out that PHE is regulated by the isoquinoline residues at the COF pores where emergent Pt-N-carbon functional heterojunctions are formed upon photo-deposition of Pt nanoparticles as co-catalysts, as probed by combined XPS and DFT calculations evidence. This work sets a key guideline to direct the design of carbon-based materials encoding the installation of metal-nitrogen-carbon active sites within tailored coordination environments enabling the catalytic performance.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11874682PMC
http://dx.doi.org/10.1002/cssc.202401977DOI Listing

Publication Analysis

Top Keywords

active sites
8
on-off switching
4
switching photocatalytic
4
photocatalytic hydrogen
4
hydrogen evolution
4
evolution built-in
4
built-in pt-nitrogen-carbon
4
pt-nitrogen-carbon reticular
4
reticular heterojunctions
4
heterojunctions cof
4

Similar Publications

Metal-organic frameworks (MOFs) are transformative platforms for heterogeneous catalysis, but distinguishing atomically dispersed metal sites from subnanometric clusters remains a major challenge. This often demands the integration of multiple characterization techniques, many of which either lack the resolving power to distinguish active sites from their surrounding environments (e.g.

View Article and Find Full Text PDF

Antiferroelectric SnO Network with Amorphous Surface for Electrochemical N Fixation.

Angew Chem Int Ed Engl

September 2025

State Key Laboratory of Bioinspired Interfacial Materials Science, Bioinspired Science Innovation Center, Hangzhou International Innovation Institute, Beihang University, Hangzhou, 311115, China.

Electrochemical nitrogen fixation-a sustainable pathway for converting abundant N into NH using renewable energy-holds transformative potential for revolutionizing artificial nitrogen cycles. Nevertheless, even the state-of-the-art catalytic systems also suffer from inadequate N adsorption capacity, which critically limits ammonia production rates and Faradaic efficiency (FE). To overcome this bottleneck, we strategically leveraged the antiferroelectric properties of SnO to establish dipole-dipole interactions with N molecules, synergistically enhancing both N adsorption and activation kinetics.

View Article and Find Full Text PDF

Electrocatalytic synthesis of ammonia is a sustainable, cost-effective alternative method for producing renewable electricity and can operate under milder conditions than the traditional Haber-Bosch method. We report direct laser-induced synthesis of copper nanocatalysts embedded in graphitic films for the synthesis of ammonia. Laser-induced metal-embedded graphene (m-LIG) offers many advantages, such as fast and simple synthesis, shape design of the electrodes, and direct printing on any substrate, including thermally sensitive plastics.

View Article and Find Full Text PDF

Electronic Structure Reconfiguration of Zn-NB Sites for Enhanced Fenton-Like Catalysis.

Angew Chem Int Ed Engl

September 2025

College of Environmental Science and Engineering, Yangzhou University, Yangzhou, 225000, P.R. China.

Despite growing interest in single-atom catalysts (SACs) for Fenton-like reactions, zinc (Zn)-based SACs remain unexplored due to the inherent inertness of Zn, whose fully occupied 3d electronic configuration limits redox activity. Here, we overcome this limitation by introducing boron (B) atoms to reconfigure the electronic structure of Zn-N coordination sites, yielding an activated catalyst denoted as Zn-NBC. This electronic modulation transforms inert Zn-N sites into catalytically active centers (Zn-NB ), enabling significantly enhanced Fenton-like activity.

View Article and Find Full Text PDF

Maximizing the exposure of edge sites and achieving sufficient promotion remain arduous tasks for designing efficient bimetallic MoS-based catalysts. Herein, ultrathin CoMoS nanosheets vertically grown on reduced graphene oxide (CoMoS/rGO-DMF) were fabricated by a facile one-pot solvothermal method using dimethylformamide (DMF) as solvent. The vertically aligned structure and good Co promotion endow CoMoS/rGO-DMF with abundant Co-Mo-S active sites and excellent catalytic performance in the hydrodeoxygenation (HDO) reaction.

View Article and Find Full Text PDF