A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Irisin improves ROS‑induced mitohormesis imbalance in H9c2 cells. | LitMetric

Irisin improves ROS‑induced mitohormesis imbalance in H9c2 cells.

Mol Med Rep

Department of Biological and Environmental Engineering, Binzhou University, Binzhou, Shandong 256600, P.R. China.

Published: December 2024


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Abnormal mitohormesis is a key pathogenic mechanism that induces a variety of cardiac diseases, including cardiac hypertrophy and heart failure. Irisin as a muscle factor serves a cardioprotective role in response to cellular oxidative stress injury. Rat cardiomyocyte cells (H9c2) were treated with 40 µM exogenous HO to establish an oxidative stress model, followed by addition of 75 nM exogenous irisin for experiments to determine mitochondrial membrane potential, reactive oxygen species, and Mitohormesis‑related factors by attrition cytometry. Subsequently, the expression of mitochondrial membrane potential, reactive oxygen species and Mitohormesis‑related factors were continued to be determined by establishing a peroxisome proliferator‑activated receptor γ coactivator‑1 alpha (PGC‑1α) siRNA interference model and continuing the treatment with the addition of 75 nM irisin 12 h before the end of interference. When H9c2 cells underwent oxidative stress, irisin partially improved mitochondrial membrane potential and reactive oxygen species levels and partially restored mitochondrial energy metabolism by upregulating fusion proteins optic atrophy 1 (OPA1) mitochondrial dynamin‑like GTPase and mitofusin 2 and downregulating fission protein dynamin‑related protein 1. Following interference with PGC‑1α, irisin promoted mitochondrial biosynthesis by increasing the mRNA levels of OPA1 and protein levels of cytochrome c oxidase subunit 4. These results suggested that irisin acted partially independently of the PGC‑1α signaling pathway to regulate mitohormesis imbalance due to oxidative stress and maintain energy metabolism by improving mitochondrial structure.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11544398PMC
http://dx.doi.org/10.3892/mmr.2024.13364DOI Listing

Publication Analysis

Top Keywords

oxidative stress
16
mitochondrial membrane
12
membrane potential
12
potential reactive
12
reactive oxygen
12
oxygen species
12
mitohormesis imbalance
8
h9c2 cells
8
species mitohormesis‑related
8
mitohormesis‑related factors
8

Similar Publications