98%
921
2 minutes
20
Muscle atrophy detrimentally impacts health and exacerbates physical disability, leading to increased mortality. In particular, sarcopenia, aging-related degenerative muscle loss, necessitates urgent remedies. Current approaches for treating muscle atrophy include exercise and nutrition, while drug exploration remains in its early stages. Cell therapy, focusing on satellite cells, faces significant challenge due to poor engraftment, safety issue, and high cost. Cell-free approach using extracellular matrix (ECM) shows a regenerative potential, but a lack of mechanical and adhesive properties hinders prolonged efficacy of ECM therapy. Here, durable muscle ECM (MEM) hydrogels for muscle atrophy by fortifying MEM with adhesive phenolic moieties including catechol and pyrogallol are demonstrated. The resultant phenolic MEM hydrogels exhibit enhanced mechanical and adhesive properties and provide sustained muscle-like microenvironments to address muscle atrophy. No local and systemic toxicities are observed after phenolic MEM injection into tibialis anterior muscle. Notably, these engineered MEM hydrogels, devoid of cells or drugs, induce tissue rejuvenation by promoting muscle protein synthesis and facilitating functional muscle recovery in mouse models of disuse- and age-induced atrophy. This study introduces cell-free, ECM-based therapeutics with translational potential for muscle atrophy by reversing muscle loss and restoring function.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11670296 | PMC |
http://dx.doi.org/10.1002/adhm.202401826 | DOI Listing |
Clin Interv Aging
September 2025
Department for Orthopedics, Traumatology and Plastic Surgery, University Hospital, Leipzig, Germany.
Study Design: Systematic review.
Purpose: As the number of elderly increases, age-related changes of body composition like osteoporosis and sarcopenic muscle changes contribute to higher morbidity, less quality of life and higher health care costs. Data on the effect of muscle atrophy on osteoporotic vertebral fractures is limited.
EMBO Mol Med
September 2025
Department of Neurology, Columbia University, New York, NY, 10032, USA.
Spinal muscular atrophy (SMA) is a neurodegenerative disease caused by ubiquitous deficiency in the SMN protein. The identification of disease modifiers is key to understanding pathogenic mechanisms and broadening the range of targets for developing SMA therapies that complement SMN upregulation. Here, we report a cell-based screen that identified inhibitors of p38 mitogen-activated protein kinase (p38 MAPK) as suppressors of proliferation defects induced by SMN deficiency in mouse fibroblasts.
View Article and Find Full Text PDFActa Ortop Mex
September 2025
Universidade de Ribeirão Preto Campus Guarujá. Guarujá (SP), Brazil.
The rupture of the teres major muscle is a well-known condition in sports activities like baseball, hockey, and tennis. There is no real consensus in the literature regarding treatment, with approaches varying between functional and surgical methods. While functional treatment appears to be a viable option, there is a lack of evidence indicating significant improvement in medial rotation strength after aforementioned treatment.
View Article and Find Full Text PDFInt Immunopharmacol
September 2025
Department of Animal Science, College of Agricultural, Yanbian University, Yanji 133002, China; Jilin Provincial Key Laboratory of Transgenic Animal and Embryo Engineering, Yanbian University, Yanji 133002, China. Electronic address:
Objective: Long-term administration of dexamethasone (DEX) to treat severe inflammation or autoimmune disorders often result in skeletal muscle atrophy and functional decline. Exosomes facilitate intercellular communication by transferring bioactive molecules, reflecting the characteristics of their tissue of origin. Myostatin-knockout (MSTN) mice exhibit muscle hypertrophy, and their muscle-derived exosomes (KO-EXOs) retain this phenotype.
View Article and Find Full Text PDFPLoS One
September 2025
Neck-Shoulder and Lumbocrural Pain Hospital of Shandong First Medical University, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China.
Background: Metabolic syndrome (MetS) and sarcopenia are major global public health problems, and their coexistence significantly increases the risk of death. In recent years, this trend has become increasingly prominent in younger populations, posing a major public health challenge. Numerous studies have regarded reduced muscle mass as a reliable indicator for identifying pre-sarcopenia.
View Article and Find Full Text PDF