98%
921
2 minutes
20
Cholangiocarcinoma (CCA) is an oxidative stress-driven liver cancer with bile duct epithelial cell phenotypes and currently lacks effective treatments, making targeted drug therapy urgently needed. Oxidative stress plays a critical role in CCA carcinogenesis, involving cells with oxidative stress resistance via upregulation of the PI3K and MEKK3 signaling pathways. In this study, we investigated the antineoplastic efficacy of a PI3K inhibitor (buparlisib) and a multi-tyrosine kinase inhibitor (ponatinib) on CCA. The cytotoxicity of the drug combination was studied in vitro using CCA cell lines and in vivo using CCA xenograft models. It was found that the drug combination suppressed growth, colony formation, and migration abilities of CCA cells and induced oxidative damage, cell cycle arrest, and autophagy by suppressing MEKK3 and YAP1 through inhibition of insulin receptor substrate 1 (IRS1) signaling. Moreover, the drugs would potentially bind to the IRS1 protein, significanly decreasing IRS1 phosphorylation. Additionally, the drug combination significantly diminished the expression of YAP1, the cell proliferation marker and an antioxidant regulator, and increased oxidative stress-responsive markers in the xenograft model. In conclusion, targeting oxidative stress resistance with combined buparlisib and ponatinib suppressed tumor growth and migration by repressing IRS1-related pathways and ultimately inducing oxidative damage, suggesting the potential for targeted therapy and clinical trials in CCA patients over the use of a single drug.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.biopha.2024.117569 | DOI Listing |
Biochim Biophys Acta Biomembr
September 2025
Instituto de Física, Universidade Federal de Goiás, Goiânia, GO, Brazil. Electronic address:
Three antileishmanial compounds incorporating a butylated hydroxytoluene (BHT) moiety and an acrylate-based Michael acceptor scaffold were rationally designed from the lead structures LQFM064 and LQFM332, which feature a chalcone-derived core. Their activities against Leishmania (L.) amazonensis were evaluated.
View Article and Find Full Text PDFChem Biodivers
September 2025
School of Pharmaceutical Science, Yunnan Key Laboratory of Pharmacology for Natural Products/College of Modern Biomedical Industry, NHC Key Laboratory of Drug Addiction Medicine, Kunming Medical University, Kunming, P. R. China.
20(R)-ginsenoside Rg3 can reduce the effects of oxidative stress and cell death in cerebral ischemia‒reperfusion injury (CIRI). Neuroinflammation is crucial post-CIRI, but how 20(R)-Rg3 affects ischemia‒reperfusion-induced neuroinflammation is unclear. To study 20(R)-Rg3's effects on neuroinflammation and neuronal preservation in stroke models and explore toll-like receptor 4/myeloid differentiation factor-88/nuclear factor kappa B (TLR4/MyD88/NF-κB) pathway mechanisms.
View Article and Find Full Text PDFJ Agric Food Chem
September 2025
Department of Food Science and Engineering, Ningbo University, Ningbo 315211, P.R. China.
Sleep deprivation (SD) is a major contributor to cognitive impairment, often accompanied by central neuroinflammation and gut microbiota dysbiosis. The tryptophan (TRP) pathway, activated via indoleamine 2,3-dioxygenase (IDO), serves as a critical link between immune activation and neuronal damage. Umbelliferone (UMB), a naturally occurring coumarin compound, possesses anti-inflammatory, antioxidant, and microbiota-modulating properties.
View Article and Find Full Text PDFElife
September 2025
Department of Biology, University of Copenhagen, Copenhagen, Denmark.
Sickness-induced sleep is a behavior conserved across species that promotes recovery from illness, yet the underlying mechanisms are poorly understood. Here, we show that interleukin-6-like cytokine signaling from the gut to brain glial cells regulates sleep. Under healthy conditions, this pathway promotes wakefulness.
View Article and Find Full Text PDFPLoS One
September 2025
Department of Emergency, The People's Hospital of Guangxi Zhuang Autonomous Region and Research Center of Medical Sciences, Guangxi Academy of Medical Sciences, Nanning, Guangxi, China.
Radiotherapy, a prevalent and effective treatment for various malignancies, often causes collateral damage to normal skin and soft tissues in the irradiated area. To address this, we developed a novel approach combining SVFG-modified adipose-derived high-activity matrix cell clusters (HAMCC) with concentrated growth factors (CGF) to enhance regeneration and repair of radiation-induced skin and soft tissue injuries. Our study included cellular assays, wound healing evaluations, and histological analyses.
View Article and Find Full Text PDF