98%
921
2 minutes
20
The investigation into viral latency illuminates its pivotal role in the survival strategies of diverse viruses, including herpesviruses, HIV, and HPV. This underscores the delicate balance between dormancy and the potential for reactivation. The study explores the intricate mechanisms governing viral latency, encompassing episomal and proviral forms, and their integration with the host's genetic material. This integration provides resilience against cellular defenses, substantially impacting the host-pathogen dynamic, especially in the context of HIV, with implications for clinical outcomes. Addressing the challenge of eradicating latent reservoirs, this review underscores the potential of epigenetic and genetic interventions. It highlights the use of innovative nanocarriers like nanoparticles and liposomes for delivering latency-reversing agents. The precision in delivery, capacity to navigate biological barriers, and sustained drug release by these nanocarriers present a promising strategy to enhance therapeutic efficacy. The review further explores nanotechnology's integration in combating latent viral infections, leveraging nanoparticle-based platforms for drug delivery, gene editing, and vaccination. Advances in lipid-based nanocarriers, polymeric nanoparticles, and inorganic nanoparticles are discussed, illustrating their potential for targeted, efficient, and multifunctional antiviral therapy. By merging a deep understanding of viral latency's molecular underpinnings with nanotechnology's transformative capabilities, this review underscores the promise of novel therapeutic interventions. These interventions have great potential for managing persistent viral infections, heralding a new era in the fight against diseases such as neuroHIV/AIDS, herpes, and HPV.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11480834 | PMC |
http://dx.doi.org/10.34133/bmr.0078 | DOI Listing |
Health Expect
October 2025
Murdoch Children's Research Institute, Parkville, Victoria, Australia.
Introduction: Despite high coverage of routine childhood vaccines, uptake of the human papillomavirus (HPV) vaccine in the Pacific Island nation of Tonga has been slow. Culturally appropriate communication resources on the importance, safety, and effectiveness of the HPV vaccine are critical to support acceptance and uptake. To develop these resources, it is important to understand what people want to know.
View Article and Find Full Text PDFPhytopathology
September 2025
Shandong Agricultural University, College of Plant Protection, Tai'an, Shandong, China;
Wheat yellow mosaic virus (WYMV) is the main cause of wheat yellow mosaic disease. Although its regulation of protein translation and interactions with host proteins are well-studied, independent regulation of the virus genome is poorly understood. This study performed in vitro experiments investigating replication regulation by the 5' UTR and 3' UTR of WYMV RNA2.
View Article and Find Full Text PDFHealth Soc Care Deliv Res
September 2025
Nuffield Department of Primary Care Health Sciences, University of Oxford, Oxford, UK.
Background: Remote services (in which the patient and staff member are not physically colocated) and digital services (in which a patient encounter is digitally mediated in some way) were introduced extensively when the COVID-19 pandemic began in 2020. We undertook a longitudinal qualitative study of the introduction, embedding, evolution and abandonment of remote and digital innovations in United Kingdom general practice. This synoptic paper summarises study design, methods, key findings, outputs and impacts to date.
View Article and Find Full Text PDFBiophys J
September 2025
Department of Chemistry and Biochemistry, Alberta RNA Research and Training Institute, University of Lethbridge, 4401 University Drive, Lethbridge, AB, T1K 3M4, Canada; Li Ka Shing Institute of Virology, University of Alberta, Edmonton T6G 2E1, Alberta, Canada; Department of Microbiology, Immunology
The dengue virus (DENV) poses a significant threat to human health, accounting for approximately 400 million infections each year. Its genome features a circular structure that facilitates replication through long-range RNA-RNA interactions, utilizing cyclization sequences located in the untranslated regions (UTRs). To gain new insights into the organization of the DENV genome, we purified the 5' and 3' UTRs of DENV in vitro and examined their structural and binding properties using various biophysical techniques combined with computational methods.
View Article and Find Full Text PDFMed Sci Monit
September 2025
Departament of Virology, National Institute of Public Health, National Institute of Hygiene - National Research Institute, Warsaw, Poland.
BACKGROUND The SENTINEL influenza surveillance system has been used in Poland since 2004, incorporating both epidemiological and virological monitoring of influenza viruses. SENTINEL works in cooperation with general practitioners, 16 Voivodship Sanitary Epidemiological Stations (VSES), and the National Influenza Centre (NIC). NON-SENTINEL samples are collected from places that do not participate in the SENTINEL program.
View Article and Find Full Text PDF