Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

By combining the rigidity of inorganic components with the flexibility of organic components, molecule-based ferroelectrics emerge as promising candidates for flexible, self-powered piezoelectric sensors. While it is well known that the performance of piezoelectric sensor devices depends not only on the materials' piezoelectric properties but also on the device architecture, research into enhancing molecule-based piezoelectric sensor performance through microstructure optimization has never been investigated. Here, we report the synthesis of a molecule-based ferroelectric, [(2-bromoethyl) trimethylammonium][GaBr] ([(CH)NCHCHBr][GaBr]) (1), which exhibits a piezoelectric coefficient ( ) of up to 331 pC N. Our investigation reveals that the power density of a composite piezoelectric sensor device made from 1@S-PDMS(800#) (with microstructures) is twelve times that of 1-Flat-PDMS (without microstructures), due to a synergistic combination of piezoelectric and triboelectric effects. Interestingly, this flexible piezoelectric sensor can effectively detect human physiological signals, such as finger bending, breathing, and speech recognition, without the need for an external power supply.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11474403PMC
http://dx.doi.org/10.1039/d4sc05442cDOI Listing

Publication Analysis

Top Keywords

piezoelectric sensor
16
piezoelectric
9
molecule-based piezoelectric
8
piezoelectric sensors
8
enhancing performance
4
molecule-based
4
performance molecule-based
4
sensors optimizing
4
optimizing microstructures
4
microstructures combining
4

Similar Publications

Characterization of skeletal muscle contraction using a flexible and wearable ultrasonic sensor.

Prog Mol Biol Transl Sci

September 2025

Department of Systems and Computer Engineering, Carleton University, Ottawa, ON, Canada. Electronic address:

Monitoring skeletal muscle contraction provides valuable information about the muscle mechanical properties, which can be helpful in various biomedical applications. This chapter presents a single-element flexible and wearable ultrasonic sensor (WUS) developed by our research group and its application for continuously monitoring and characterizing skeletal muscle contraction. The WUS is made from a 110-µm thick polyvinylidene fluoride piezoelectric polymer film.

View Article and Find Full Text PDF

Objective: Transcranial ultrasound (US) stimulation (TUS) has emerged as a promising technique for minimally invasive, localized, deep brain stimulation. However, indirect auditory effects during neuromodulation require careful consideration, particularly in experiments with rodents. One method to prevent auditory responses involves applying tapered envelopes to US bursts.

View Article and Find Full Text PDF

The direct deposition of piezoelectric ceramic thin films onto metal foils has become a significant challenge due to the increasing demand for embedded decoupling capacitors, nanogenerators, and flexible piezo-sensors. However, traditional thermal sintering (TS) methods present several issues for metal foils, including alterations in mechanical properties, the formation of wrinkles, and the need for precise control over the sintering atmosphere to prevent oxidation. In this study, we successfully crystallized BaTiO on a Ni foil under atmospheric conditions, mitigating thermal damage to the foil through a hybrid-solution-incorporated photoassisted chemical solution deposition (HS-PCSD) method.

View Article and Find Full Text PDF

Digital light processing (DLP) presents a promising approach for fabricating intricately designed piezoelectric components, which are essential for developing high-sensitivity piezoelectric sensor systems. However, the inherent layer-by-layer stacking nature of DLP induces interlayer cracking in printed ceramics, which severely deteriorates their performance. This work introduces an innovative interfacial engineering strategy to print superlattice components with exceptional piezoelectric performance.

View Article and Find Full Text PDF

Heart failure diagnosis and ejection fraction classification via feature fusion model using non-contact vital sign signals.

Comput Methods Programs Biomed

August 2025

School of Electronic Science and Engineering (School of Microelectronics), South China Normal University, Foshan, 528225, China. Electronic address:

Background And Objectives: Ballistocardiography (BCG) has emerged as a promising modality for home-based heart failure (HF) monitoring, yet existing single-dimensional manual feature analyses fail to adequately characterize left ventricular ejection fraction (LVEF < 40%) dynamics. We address this limitation by developing a hybrid feature fusion framework that synergizes manual feature engineering with deep learning for improved HF diagnosis and LVEF classification.

Methods: 83 participants were recruited from a hospital, with their samples categorized into two (healthy and HF) and three classes (healthy, LVEF ≥ 40% HF, and LVEF < 40% HF) based on clinical diagnosis.

View Article and Find Full Text PDF