Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Tartary buckwheat ( Gaertn.) is a coarse grain crop rich in flavonoids that are beneficial to human health because they function as anti-inflammatories and provide protection against cardiovascular disease and diabetes. Flavonoid biosynthesis is a complex process, and relatively little is known about the regulatory pathways involved in Tartary buckwheat. Here, we cloned and characterized the gene from Tartary buckwheat, which encodes a member of the R2R3-MYB transcription factor family. Amino acid sequence and phylogenetic analysis indicate that FtMYB163 is a member of subgroup 7 (SG7) and closely related to FeMYBF1, which regulates flavonol synthesis in common buckwheat (). We demonstrated that FtMYB163 localizes to the nucleus and has transcriptional activity. Expression levels of in the roots, stems, leaves, flowers, and seeds of were positively correlated with the total flavonoid contents of these tissues. Overexpression of in transgenic enhanced the expression of several genes involved in early flavonoid biosynthesis (, , , and ) and significantly increased the accumulation of several flavonoids, including naringenin chalcone, naringenin-7-O-glucoside, eriodictyol, and eight flavonol compounds. Our findings demonstrate that FtMYB163 positively regulates flavonol biosynthesis by changing the expression of several key genes in flavonoid biosynthetic pathways.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11478641PMC
http://dx.doi.org/10.3390/plants13192704DOI Listing

Publication Analysis

Top Keywords

tartary buckwheat
16
r2r3-myb transcription
8
transcription factor
8
buckwheat gaertn
8
flavonoid biosynthesis
8
regulates flavonol
8
buckwheat
5
gene encodes
4
encodes sg7
4
sg7 r2r3-myb
4

Similar Publications

Genome-wide identification and functional characterization of rapid alkalinization factor 6 as a key peptide regulator of abiotic stress tolerance in Tartary buckwheat.

Plant Sci

September 2025

Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering and Technology Research Center of Coarse Cereal Industrialization, Institute for Advanced Study, Chengdu University, Chengdu, Sichuan, China. Electronic address:

Rapid alkalinization factors (RALFs) are cysteine-rich signaling peptides in plants that play critical roles in development, immune regulation, and responses to abiotic stress. Despite their importance, the functional characterization of RALF family members in Tartary buckwheat (Fagopyrum tataricum), a nutrient-rich crop known for its remarkable resilience to multiple stresses, remains largely unexplored. In this study, we conducted a comprehensive genome-wide analysis to identify and characterize the FtRALF gene family in Tartary buckwheat, examining their phylogenetic relationships, gene structures, and duplication events.

View Article and Find Full Text PDF

The growing demand for healthy Tartary buckwheat-based foods has sparked interest in fermentation as a processing technique to enhance food quality and bioactivity. This study investigated the impact of solid-state fermentation of black Tartary buckwheat (BTB) with Monascus purpureus and Eurotium cristatum PW-1 on its quality, biochemical properties, and hypolipidemic potential, using metabolomics, bioinformatics, network pharmacology, and invivo zebrafish models. Fermentation significantly increased total amino acids, γ-aminobutyric acid, and aromatic volatile compounds such as alcohols, esters, terpenes, and terpenoids, enhancing the flavor profile.

View Article and Find Full Text PDF

The growing consumer interest in functional and health-oriented foods prompted the incorporation of tartary buckwheat sprout flour (TBSF) into food production. The addition of TBSF enhanced the nutritional value of noodles. Research has shown that as the proportion of TBSF increased, both the water absorption rate and thermal stability of the dough improved, while formation time decreased and dough aging was inhibited.

View Article and Find Full Text PDF

Tartary buckwheat hulls, a phenolic-rich by-product of buckwheat processing, offer great potential for resource utilization. In this study, ultrasound-assisted enzymatic extraction with two temperatures (40 °C and 50 °C) was employed to obtain phenolics from Tartary buckwheat hulls. Compared with the traditional extraction method (207 mg/100 g), ultrasound-assisted enzymatic extraction increased the total phenolic yield by 91.

View Article and Find Full Text PDF