98%
921
2 minutes
20
The trans-Golgi network (TGN), a key compartment in endomembrane trafficking, participates in both secretion to and endocytosis from the plasma membrane. Consequently, the TGN plays a key role in plant growth and development. Understanding how proteins are sorted for secretion or endocytic recycling at the TGN is critical for elucidating mechanisms of plant development. We previously showed that the protein ECHIDNA is essential for phytohormonal control of hypocotyl bending because it mediates secretion of cell wall components and the auxin influx carrier AUXIN RESISTANT 1 (AUX1) from the TGN. Despite the critical role of ECHIDNA in TGN-mediated trafficking, its mode of action remains unknown in Arabidopsis (Arabidopsis thaliana). We therefore performed a suppressor screen on the ech mutant. Here, we report the identification of TGN-localized TYPHON 1 (TPN1) and TPN2 proteins. A single amino acid change in either TPN protein causes dominant suppression of the ech mutant's defects in growth and AUX1 secretion, while also restoring wild-type (WT)-like ethylene-responsive hypocotyl bending. Importantly, genetic and cell biological evidence shows that TPN1 acts through RAS-ASSOCIATED BINDING H1b (RABH1b), a TGN-localized RAB-GTPase. These results provide insights into ECHIDNA-mediated secretory trafficking of cell wall and auxin carriers at the TGN, as well as its role in controlling plant growth.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11663552 | PMC |
http://dx.doi.org/10.1093/plcell/koae280 | DOI Listing |
Nat Immunol
September 2025
Department of Microbiology, University of Chicago, Chicago, IL, USA.
Cholesterol-dependent cytolysins (CDCs) constitute the largest group of pore-forming toxins and serve as critical virulence factors for diverse pathogenic bacteria. Several CDCs are known to activate the NLRP3 inflammasome, although the mechanisms are unclear. Here we discovered that multiple CDCs, which we referred to as type A CDCs, were internalized and translocated to the trans-Golgi network (TGN) to remodel it into a platform for NLRP3 activation through a unique peeling membrane mechanism.
View Article and Find Full Text PDFEMBO Rep
September 2025
Institute of Endotypes in Oncology, Metabolism and Immunology "G. Salvatore"-Second Unit (IEOMI-SU), National Research Council of Italy (CNR), Via P. Castellino 111, Napoli, Italy.
The classical models of intra-Golgi transport envision a movement of cargoes from cis- to trans-Golgi, followed by their sorting at the trans-Golgi network (TGN). During this vectorial transport, the cargoes are processed by sequentially acting glycosylation enzymes. A number of studies challenged the vectorial transport model and proposed alternative transport routes bypassing either directional transport or the TGN.
View Article and Find Full Text PDFJ Lipid Res
September 2025
Keenan Centre for Biomedical Research, St. Michael's Hospital, Toronto, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Canada; Department of Biochemistry, University of Toronto, Canada; Department of Medicine and the Interdepartmental Division of Critical Care Med
Atherosclerosis begins with the subendothelial retention of low-density lipoproteins (LDL) from the circulation. While LDL transcytosis across the endothelium is mediated by SR-BI and ALK1 and is usually independent of LDLR, the intracellular mechanisms and route of LDL transcytosis remain unclear. Using total internal reflection fluorescence microscopy in LDLR-depleted human coronary artery endothelial cells (HCAECs), we found that LDL transcytosis can proceed both directly as well as indirectly from an intracellular compartment.
View Article and Find Full Text PDFInt J Mol Sci
August 2025
The Helen B Taussig Heart Center, Cardiovascular Innovation Laboratory, Division of Cardiology, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA.
UDP-Gal-β-1,4 galactosyltransferase-V (GalT-V) is a member of a large family of galactosyltransferases whose function is to transfer galactose from the nucleotide sugar UDP-galactose to a glycosphingolipid glucosylceramide, to generate lactosylceramide (LacCer). It also causes the N and O glycosylation of proteins in the Trans Golgi area. LacCer is a bioactive lipid second messenger that activates an "oxidative stress pathway", leading to critical phenotypes, e.
View Article and Find Full Text PDFNat Commun
August 2025
Stem Cells and Metabolism Research Program and Department of Anatomy, Faculty of Medicine, University of Helsinki, Helsinki, Finland.
Sac1 is a conserved phosphoinositide phosphatase, whose loss-of-function compromises cell and organism viability. Here, we employ acute auxin-inducible Sac1 degradation to identify its immediate downstream effectors in human cells. Most of Sac1 is degraded in ~1 h, paralleled by increased PI(4)P and decreased cholesterol in the trans-Golgi network (TGN) during the following hour, and superseded by Golgi fragmentation, impaired glycosylation, and selective degradation of TGN proteins by ~4 h.
View Article and Find Full Text PDF