Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Ionic liquids (ILs) are considered salt in liquid state, which is composed of organic cations and anions with low melting points (<100 °C). ILs have become a major scientific area with an extensive range of applications including chemistry, electrochemistry, and pharmaceutics. ILs have received great research interest in the pharmaceutical field as solvents, anti-solvents, co-solvents, and reagents in synthesis and formulation. While therapeutic ILs have been investigated for oral and trans-dermal drug delivery systems showing promising compatibility with a wide range of therapeutics, enhanced drug permeation through the skin, and cell membrane solvation to open channels to facilitate molecular passage, their potential to cross the challenging blood-brain barrier (BBB) remains an unanswered question. IL-based therapies could potentially be a game changer for improving drug delivery to cellular targets both at and across the BBB. In this review, we discuss (1) the tunable physicochemical properties of ILs; (2) the vast and various applications of ILs in the development and improvement of drug delivery systems; and (3) ILs as a potential approach for increasing drug accumulation in the brain tissue.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11649452PMC
http://dx.doi.org/10.1080/10837450.2024.2417004DOI Listing

Publication Analysis

Top Keywords

ionic liquids
8
liquids potential
4
potential development
4
development improvement
4
improvement drug
4
drug delivery
4
delivery systems
4
systems evidence
4
evidence tendency
4
tendency promote
4

Similar Publications

LiNiMnO (LNMO) is a promising material for the cathode of lithium-ion batteries (LiBs); however, its high operating voltage causes stability issues when used with carbonate battery electrolytes. Ionic liquids are a viable alternative to conventional carbonate solvents due to their thermal stability and electrochemical window. This work reports the performance of LNMO/Li half cells with an ionic liquid electrolyte (ILE) composed of 0.

View Article and Find Full Text PDF

Bridging electrostatic screening and ion transport in lithium salt-doped ionic liquids.

J Chem Phys

September 2025

Department of Chemistry Education and Graduate Department of Chemical Materials, Pusan National University, Busan 46241, Republic of Korea.

Alkali salt-doped ionic liquids are emerging as promising electrolyte systems for energy applications, owing to their excellent interfacial stability. To address their limited ionic conductivity, various strategies have been proposed, including modifying the ion solvation environment and enhancing the transport of selected ions (e.g.

View Article and Find Full Text PDF

The dynamics of the different constituents of the ionic liquid 1-hexyl-3-methylimidazolium chloride (HmimCl) is investigated using nuclear magnetic resonance including chlorine relaxometry, line shape analysis, and proton-detected diffusometry, as well as frequency-dependent shear mechanical measurements. This combination of techniques is useful to probe the individual motions of the anions and the cations, and the sample's overall flow response. The 35Cl- dynamics appears to be close to the structural (or α-) relaxation as seen by rheology.

View Article and Find Full Text PDF

Plasma-Driven Decomposition of HAN-Based Ionic Liquids.

ACS Omega

September 2025

Ming Hsieh Department of Electrical Engineering, University of Southern California, Los Angeles, California 90089, United States.

A nanosecond pulse transient plasma is employed to initiate and control the exothermic decomposition of ionic liquids, namely, a mixture of hydroxylammonium nitrate (HAN) and 1-ethyl-3-methylimidazolium ethyl sulfate [EMIM]/[EtSO], as well as some noncombustible ionic liquids. Here, the plasma is discharged in a cylindrical geometry with a coaxial center wire electrode. High voltage (20 kV) nanosecond pulses (20 ns) at various frequencies up to 10 kHz produce a plasma discharge in the ionic liquid that initiates its nonthermal decomposition.

View Article and Find Full Text PDF

Marine chitin valorization by ionic liquids and deep eutectic solvents: Dissolution, green extraction and conversion.

Bioresour Technol

September 2025

Department of Polymer Materials and Engineering, College of Materials and Metallurgy, Guizhou University, Guiyang 550025, China; Technology Innovation Center for High-Efficiency Utilization of Bamboo-Based Biomass in Guizhou Province, Guiyang 550025, China. Electronic address:

Worldwide, marine shell waste generated from the seafood industry has emerged as a significant environmental challenge. Indeed, this shell waste represents an abundant source of various valuable products, particularly chitin. However, the extraction and subsequent processing of chitin are hindered by the inherently resistant structure of these chitin-rich feedstocks, coupled with strong hydrogen bonding between chitin chains.

View Article and Find Full Text PDF