98%
921
2 minutes
20
Fig. 1: Schematic illustration of the principle of the Dual targets driven SPEXPAR assisted MNAzyme (D-S-M) fluorescent biosensor for olfactory marker protein (OMP) detection. A. Workflow for detection of OMP in nasal swab. B. Isothermal Self-Primer EXPonential Amplification Reaction (SPEXPAR) amplification. C. The production of fluorescent signal by Multicomponent Nuclear Acid Enzyme (MNAzyme). The signal of OMP was amplified and changed into the detectable fluorescence signal based on the reactions of SPEXPAR and MNAzyme in the D-S-M fluorescence biosensor. The qualitative or quantitative analysis of OMP can be measured by the analysis of the fluorescence intensity.Image 1.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11471671 | PMC |
http://dx.doi.org/10.1016/j.mtbio.2024.101272 | DOI Listing |
Biomaterials
September 2025
Key Laboratory of Biopharmaceutical Preparation and Delivery, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China. Electronic address:
The stimulator of interferon genes (STING) pathway represents a promising target in cancer immunotherapy. However, the clinical translation of cyclic dinucleotide (CDN)-based STING agonists remains hindered by insufficient formation of functional CDN-STING complexes. This critical bottleneck arises from two interdependent barriers: inefficient cytosolic CDN delivery and tumor-specific STING silencing via DNA methyltransferase-mediated promoter hypermethylation.
View Article and Find Full Text PDFAnal Chem
September 2025
Jiaxing Key Laboratory of Molecular Recognition and Sensing, College of Biological and Chemical Engineering, Jiaxing University, Jiaxing 314001, China.
Despite the promise of electrochemical biosensors in amplified nucleic acid diagnostics, existing high-sensitivity platforms often rely on a multilayer surface assembly and cascade amplification confined to the electrode interface. These stepwise strategies suffer from inefficient enzyme activity, poor mass transport, and inconsistent probe orientation, which compromise the amplification efficiency, reproducibility, and practical applicability. To address these limitations, we report a programmable dual-phase electrochemical biosensing system that decouples amplification from signal transduction.
View Article and Find Full Text PDFChem Biodivers
September 2025
Chongqing Key Laboratory of Development and Utilization of DaoDi Medicinal Materials in Three Gorges Reservoir Area, Chongqing Three Gorges Medical College, Chongqing, P. R. China.
Three new steroidal saponins, kingianoside L-N (1-3), whose structures were elucidated through comprehensive spectroscopic analysis, and 15 known compounds (4-18) were isolated from Polygonatum kingianum var. grandifolium, a source of the traditional antihyperglycemic medicine Polygonati rhizome. The effects of compounds 1-13 on α-glucosidase activity were evaluated in vitro.
View Article and Find Full Text PDFAnal Chem
September 2025
School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255049, PR China.
Pax-5a gene, as a nucleic acid biomarker closely associated with B-cell acute lymphoblastic leukemia (B-ALL), holds significant potential for early disease diagnosis. In this study, we developed a highly accurate and efficient "on-super on-off" photoelectrochemical (PEC) biosensor based on a dual-photoelectrode heterojunction system integrated with a multisphere cascade DNA amplification strategy. The designed heterojunction dual-photoelectrode platform, comprising a InO/CdS photoanode (on state) and an in situ-formed MIL-68(In)/InO (MIO) photocathode, effectively extends the electron-hole transport pathway, enhances photogenerated charge separation, and produces high-amplitude signal output (super on state), thereby providing a robust baseline for signal transduction.
View Article and Find Full Text PDFAdv Sci (Weinh)
September 2025
Department of Chemical and Biological Engineering, Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science & Technology, Hong Kong, 999077,
Breast cancer (BC), characterized by its heterogeneity and diverse subtypes, necessitates personalized treatment strategies. This study presents MF3Ec-TBPP nanoparticles (NPs) as a promising approach, integrating an aggregation-induced emission (AIE)-based photosensitizer, TBPP, with the MF3Ec aptamer to enhance targeted photodynamic therapy (PDT) for Luminal A subtype BC cells. The nanoparticles also feature a 1, 2-distearoyl-sn-glycero-3-phosphoethanolamine-poly(ethylene glycol) shell and dipalmitoyl phosphatidylcholine (DPPC), which stabilize the structure and inhibit singlet oxygen generation, effectively reducing off-target effects and protecting healthy tissues.
View Article and Find Full Text PDF