Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Defect-rich nitrogen-doped biocatalyst (B-NC) was synthesized from natural cellulose of wheat straw using straightforward mechanical method and one-step pyrolysis approach. In contrast to the nitrogen-doped biocatalyst (NC), by leveraging the synergistic effects of nitrogen dopants and surface defects, the microenvironment-modulated B-NC exhibited the enhanced mass transfer efficiency and a significant improvement in reactivity for p-nitrophenol degradation (111 %-196 %). The catalyst's exceptional performance primarily arose from graphitic N, pyridinic N and CO active sites, which mainly derived from the cellulose structure of wheat straw and nitrogen dopants. Electron paramagnetic resonance and quenching tests confirmed that the B-NC/peroxymonosulfate system generated more reactive species (SO•, •OH, O•, and O) during p-nitrophenol degradation, surpassing the NC/peroxymonosulfate system. Additionally, both density functional theory calculations and electrochemical experiments provided evidence of peroxymonosulfate strongly adsorbing onto B-NC's defect sites, facilitating the formation of catalyst/peroxymonosulfate* complexes and promoting electron transfer processes. This research provides valuable insights into the regulation of defects in nitrogen-doped biocatalyst derived from natural cellulose, presenting a promising solution for remediating refractory organic pollutants.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijbiomac.2024.136525DOI Listing

Publication Analysis

Top Keywords

natural cellulose
12
wheat straw
12
p-nitrophenol degradation
12
nitrogen-doped biocatalyst
12
biocatalyst derived
8
derived natural
8
cellulose wheat
8
nitrogen dopants
8
microenvironment modulation
4
biocatalyst
4

Similar Publications

Enhancement of the optical, electrical, and dielectric properties of PEO/CMC matrix via NaPc dye additive for optoelectronic devices.

Int J Biol Macromol

September 2025

Department of Physics, Faculty of Education, Seiyun University, Hadhramout, Yemen. Electronic address:

In the present study, polymer composite samples were fabricated using the casting technique by incorporating varying weight percentages (0.0, 0.1, 0.

View Article and Find Full Text PDF

Advances in cellulosic natural fibre-reinforced polymer composites: Properties, additive manufacturing and hybridisation - A review.

Int J Biol Macromol

September 2025

Natural Composites Research Group Lab, Department of Materials and Production Engineering, The Sirindhorn International Thai-German Graduate School of Engineering (TGGS), King Mongkut's University of Technology North Bangkok (KMUTNB), Bangkok, Thailand.

This review critically examines the rapidly advancing field of cellulosic natural fibre-reinforced polymer (NFRP) composites, with a particular emphasis on material innovation aligned with sustainability and environmental responsibility. The review presents a systematic analysis of recent literature evaluating the mechanical, thermal, water absorption, wear, and machining characteristics of NFRP composites, as well as the influence of advanced processing approaches such as additive manufacturing. Special attention is given to the structure-property relationships and hybridisation strategies employed to address limitations such as relatively lower mechanical performance and durability compared to synthetic fibre composites.

View Article and Find Full Text PDF

Evaluation of crosslinked cellulose-based solid and gel polymer electrolytes in lithium-ion batteries.

Int J Biol Macromol

September 2025

Faculty of Polymer Engineering, Sahand University of Technology, P.O. Box 51335-1996, Tabriz, Iran; Institute of Polymeric Materials, Sahand University of Technology, P.O. Box 51335-1996, Tabriz, Iran. Electronic address:

In order to develop an alternate material for energy storage devices like batteries, this research is being done to create polymer electrolytes based on cellulose as natural polymer. Natural polymers as battery components have a number of advantages, including availability, biodegradability, unleakage, stable form, superior process, electrochemical stability, and low cost. In this study, polymer electrolytes based on cellulose have been synthesized by solution casting to prepare a thin polymer films.

View Article and Find Full Text PDF

Cellulosic Flexible Electronic Materials: Recent Advances in Structural Design, Functionalization, and Smart Applications.

Macromol Rapid Commun

September 2025

Key Laboratory of Bio-based Material Science and Technology of Ministry of Education, Northeast Forestry University, Harbin, P. R. China.

Rapid advancement of flexible electronics has generated a demand for sustainable materials. Cellulose, a renewable biopolymer, exhibits exceptional mechanical strength, customizable properties, biodegradability, and biocompatibility. These attributes are largely due to its hierarchical nanostructures and modifiable surface chemistry.

View Article and Find Full Text PDF

Gravitational and Magnetic Bi-Field Assisted One-Step Quick Fabrication of Implantable Micro Zn-Ion Hybrid Supercapacitor.

Adv Healthc Mater

September 2025

Energy Storage Institute of Lanzhou University of Technology, School of Materials Science and Engineering, State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals, Lanzhou University of Technology, Lanzhou, 730050, China.

The rapid advancement of implantable medical electronic devices has spurred substantial research into implantable energy storage systems. However, the presence of multiple film resistors in traditional sandwich structures impedes further enhancements in the electrochemical performance of supercapacitors and may result in contact failures between electrodes and separators or catastrophic short-circuit failures during tissue deformation. This study introduces a novel approach for fabricating all-in-one Zn-ion hybrid supercapacitors, which effectively mitigates performance degradation and safety concerns arising from interfacial issues.

View Article and Find Full Text PDF