98%
921
2 minutes
20
Defect-rich nitrogen-doped biocatalyst (B-NC) was synthesized from natural cellulose of wheat straw using straightforward mechanical method and one-step pyrolysis approach. In contrast to the nitrogen-doped biocatalyst (NC), by leveraging the synergistic effects of nitrogen dopants and surface defects, the microenvironment-modulated B-NC exhibited the enhanced mass transfer efficiency and a significant improvement in reactivity for p-nitrophenol degradation (111 %-196 %). The catalyst's exceptional performance primarily arose from graphitic N, pyridinic N and CO active sites, which mainly derived from the cellulose structure of wheat straw and nitrogen dopants. Electron paramagnetic resonance and quenching tests confirmed that the B-NC/peroxymonosulfate system generated more reactive species (SO•, •OH, O•, and O) during p-nitrophenol degradation, surpassing the NC/peroxymonosulfate system. Additionally, both density functional theory calculations and electrochemical experiments provided evidence of peroxymonosulfate strongly adsorbing onto B-NC's defect sites, facilitating the formation of catalyst/peroxymonosulfate* complexes and promoting electron transfer processes. This research provides valuable insights into the regulation of defects in nitrogen-doped biocatalyst derived from natural cellulose, presenting a promising solution for remediating refractory organic pollutants.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijbiomac.2024.136525 | DOI Listing |
Int J Biol Macromol
September 2025
Department of Physics, Faculty of Education, Seiyun University, Hadhramout, Yemen. Electronic address:
In the present study, polymer composite samples were fabricated using the casting technique by incorporating varying weight percentages (0.0, 0.1, 0.
View Article and Find Full Text PDFInt J Biol Macromol
September 2025
Natural Composites Research Group Lab, Department of Materials and Production Engineering, The Sirindhorn International Thai-German Graduate School of Engineering (TGGS), King Mongkut's University of Technology North Bangkok (KMUTNB), Bangkok, Thailand.
This review critically examines the rapidly advancing field of cellulosic natural fibre-reinforced polymer (NFRP) composites, with a particular emphasis on material innovation aligned with sustainability and environmental responsibility. The review presents a systematic analysis of recent literature evaluating the mechanical, thermal, water absorption, wear, and machining characteristics of NFRP composites, as well as the influence of advanced processing approaches such as additive manufacturing. Special attention is given to the structure-property relationships and hybridisation strategies employed to address limitations such as relatively lower mechanical performance and durability compared to synthetic fibre composites.
View Article and Find Full Text PDFInt J Biol Macromol
September 2025
Faculty of Polymer Engineering, Sahand University of Technology, P.O. Box 51335-1996, Tabriz, Iran; Institute of Polymeric Materials, Sahand University of Technology, P.O. Box 51335-1996, Tabriz, Iran. Electronic address:
In order to develop an alternate material for energy storage devices like batteries, this research is being done to create polymer electrolytes based on cellulose as natural polymer. Natural polymers as battery components have a number of advantages, including availability, biodegradability, unleakage, stable form, superior process, electrochemical stability, and low cost. In this study, polymer electrolytes based on cellulose have been synthesized by solution casting to prepare a thin polymer films.
View Article and Find Full Text PDFMacromol Rapid Commun
September 2025
Key Laboratory of Bio-based Material Science and Technology of Ministry of Education, Northeast Forestry University, Harbin, P. R. China.
Rapid advancement of flexible electronics has generated a demand for sustainable materials. Cellulose, a renewable biopolymer, exhibits exceptional mechanical strength, customizable properties, biodegradability, and biocompatibility. These attributes are largely due to its hierarchical nanostructures and modifiable surface chemistry.
View Article and Find Full Text PDFAdv Healthc Mater
September 2025
Energy Storage Institute of Lanzhou University of Technology, School of Materials Science and Engineering, State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals, Lanzhou University of Technology, Lanzhou, 730050, China.
The rapid advancement of implantable medical electronic devices has spurred substantial research into implantable energy storage systems. However, the presence of multiple film resistors in traditional sandwich structures impedes further enhancements in the electrochemical performance of supercapacitors and may result in contact failures between electrodes and separators or catastrophic short-circuit failures during tissue deformation. This study introduces a novel approach for fabricating all-in-one Zn-ion hybrid supercapacitors, which effectively mitigates performance degradation and safety concerns arising from interfacial issues.
View Article and Find Full Text PDF