98%
921
2 minutes
20
Background: Diffuse midline glioma (DMG) is the most aggressive primary brain tumor in children. All previous studies examining the role of systemic agents have failed to demonstrate a survival benefit; the only standard of care is radiation therapy (RT). Successful implementation of radiosensitization strategies in DMG remains an essential and promising avenue of investigation. We explore the use of Napabucasin, an NAD(P)H quinone dehydrogenase 1 (NQO1)-bioactivatable reactive oxygen species (ROS)-inducer, as a potential therapeutic radiosensitizer in DMG.
Methods: In this study, we conduct in vitro and in vivo assays using patient-derived DMG cultures to elucidate the mechanism of action of Napabucasin and its radiosensitizing properties. As penetration of systemic therapy through the blood-brain barrier (BBB) is a significant limitation to the success of DMG therapies, we explore focused ultrasound (FUS) and convection-enhanced delivery (CED) to overcome the BBB and maximize therapeutic efficacy.
Results: Napabucasin is a potent ROS-inducer and radiosensitizer in DMG, and treatment-mediated ROS production and cytotoxicity are dependent on NQO1. In subcutaneous xenograft models, combination therapy with RT improves local control. After optimizing targeted drug delivery using CED in an orthotopic mouse model, we establish the novel feasibility and survival benefit of CED of Napabucasin concurrent with RT.
Conclusions: As nearly all DMG patients will receive RT as part of their treatment course, our validation of the efficacy of radiosensitizing therapy using CED to prolong survival in DMG opens the door for exciting novel studies of alternative radiosensitization strategies in this devastating disease while overcoming limitations of the BBB.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11889722 | PMC |
http://dx.doi.org/10.1093/neuonc/noae215 | DOI Listing |
Oncogene
September 2025
Division of Neurosurgery, Children's Hospital Los Angeles, Los Angeles, CA, USA.
It has become evident from decades of clinical trials that multimodal therapeutic approaches with focus on cell intrinsic and microenvironmental cues are needed to improve understanding and treat the rare, inoperable, and ultimately fatal diffuse intrinsic pontine glioma (DIPG), now categorized as a diffuse midline glioma. In this study we report the development and characterization of an in vitro system utilizing 3D Tumor Tissue Analogs (TTA), designed to replicate the intricate DIPG microenvironment. The innate ability of fluorescently labeled human brain endothelial cells, microglia, and patient-derived DIPG cell lines to self-assemble has been exploited to generate multicellular 3D TTAs that mimic tissue-like microstructures, enabling an in- depth exploration of the spatio-temporal dynamics between neoplastic and stromal cells.
View Article and Find Full Text PDFJ Immunother Cancer
September 2025
Department of Pediatrics, Center for Childhood Cancer and Blood Disorders, Division of Heme/Onc and Bone Marrow Transplant, Children's Hospital Colorado, University of Colorado School of Medicine, Aurora, Colorado, USA
Background: Diffuse midline glioma (DMG) and glioblastoma (GBM) are aggressive brain tumors with limited treatment options. Macrophage phagocytosis is a complex, tightly regulated process governed by competing pro-phagocytic and anti-phagocytic signals. CD47-SIRPα signaling inhibits macrophage activity, while radiotherapy (RT) can enhance tumor immunogenicity.
View Article and Find Full Text PDFNeuron
September 2025
Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA; Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA. Electronic address:
In the central nervous system (CNS), where neuronal activity promotes brain development and plasticity, including glial precursor cell proliferation, the activity of neurons robustly drives the initiation, growth, invasion, treatment resistance, and progression of brain cancers such as adult and pediatric hemispheric high-grade gliomas, diffuse midline gliomas such as diffuse intrinsic pontine glioma (DIPG), and pediatric low-grade optic gliomas. The underlying mechanisms involve both neuronal-activity-regulated paracrine signaling and direct electrochemical communication through neuron-to-glioma synapses. Neuronal inputs to tumors can then be propagated through connections between cancer cells.
View Article and Find Full Text PDFAbnormal blood vessels limit the delivery and function of endogenous T cells as well as adoptively transferred Chimeric Antigen Receptor (CAR)-T cells in the tumor microenvironment (TME). We recently showed that vascular normalization using anti-VEGF therapy can overcome these challenges and improve the outcome of CAR-T therapy in glioblastoma models in mice. Here, we developed a physiologically based pharmacokinetic model to simulate the dynamics of both adoptively transferred CAR-T cells and endogenous immune cells in solid tumors following vascular normalization.
View Article and Find Full Text PDFJ Neurosurg Case Lessons
September 2025
Department of Neurosciences and Reproductive and Odontostomatological Sciences, Division of Neurosurgery, University of Napoli "Federico II," Naples, Italy.
Background: Brainstem cavernous malformations (BSCMs) are rare vascular lesions, most frequently located in the pons. Their surgical management is particularly demanding due to the dense concentration within the brainstem of eloquent neural pathways and nuclei. Among various surgical routes, the endoscopic endonasal transclival approach (EETA) has been established as a valuable option for treating selected ventrally located lesions.
View Article and Find Full Text PDF